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The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side
• ` is extremal if it passes through 2 points of P
• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side

• ` is extremal if it passes through 2 points of P
• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side

• ` is extremal if it passes through 2 points of P
• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side
• ` is extremal if it passes through 2 points of P

• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side
• ` is extremal if it passes through 2 points of P
• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side
• ` is extremal if it passes through 2 points of P
• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk: problem setup
Student

 Presentation

• ` is a median line if ≥ dn/2e points of P lie on either side
• ` is extremal if it passes through 2 points of P
• Extremal yolk is smallest radius ball intersecting all
extremal median lines

2/14



The yolk
Student

 Presentation

• Yolk is smallest radius ball intersecting all median lines

• Motivation: voting theory (generalizes plurality point)

yolk 6= extremal yolk [Stone and Tovey, 1992]
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Previous work & our results
Student

 Presentation

Exact:
• Od(n(d+1)

2
) for yolk (improved to O(n4) in R2) [Tovey, 1992]

• O(n4/3 logO(1) n) in R2 for yolk and extremal yolk [de Berg,
Gudmundsson, et al., 2018]

• O(n log7 n log4(1/ε)) for yolk [Gudmundsson and Wong,
2019]

• O((n/ε3) log3 n) for extremal yolk [de Berg, Chung, et al.,
2019]
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In R2: O(n logn) expected time for yolk/extremal yolk, and
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• Extremal median lines induced by 2 points of P
=⇒ ≤

(n
2
)
implicit constraints

• Solve LP in O(n2) time

• Faster?
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Solving the implicit LP
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• Uses Chan’s framework for implicit LPs [Chan, 2004]

• P: a set of points; n = |P|
• L(P): extremal median lines induced by P
• Goal: compute a solution for L(P)
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Preliminary II: Zones
Student

 Presentation

Definition: Zone of a surface
Given lines L, curve γ, the zone Z(γ, L) are cells of A(L)
intersecting γ.

Lemma [Aronov et al., 1993, de Berg, Dobrindt, et al., 1995]
Z(γ, L) can be computed in O(n logn) expected time.
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Computing the extremal yolk
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 Presentation

• P points, L(P) extremal median lines

• In the dual:

• Points ⇐⇒ lines
• Ball ⇐⇒ region R between hyperbola
• Extremal median line ⇐⇒ vertex of the n/2-level
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The key subproblem
Student

 Presentation

R

Is there a vertex of the n/2-level outside R?
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 Presentation

R

Is there a vertex of the n/2-level outside R?

Check vertices of A(L(P)) near boundary of R!
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 Presentation

Task: Is there a vertex of n/2-level in R2 \ R?

Idea: Compute zone of ∂R, walk around vertices in zone, check
if any vertex in R2 \ R has level n/2.

Result: Decider takes O(n logn) time. 11/14
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• L(P): extremal median lines induced by P
• Goal: compute a solution for L(P)

For any Q ⊆ P, m = |Q|, assume in D(m) time,

(a) Given Q, candidate ball b: does b violate L(Q)? X

(b) Given Q: construct O(1) sets Q1, . . . ,Qr , |Qi| ≤ αm,
H(Q) = ∪ri=1H(Qi) X

Our result
D(m) = Od(md−1 logm) =⇒

extremal yolk in Od(nd−1 logn) expected time.
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Other applications I
Student

 Presentation

• Yolk: Smallest ball intersecting all median hyperplanes

• Egg: Smallest ball intersecting all extremal hyperplanes

• Easy modification! Check if any vertex of A(L(P)) lies
outside R

=⇒ Od(nd−1 logn) expected time
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Other applications II
Student

 Presentation

• Hk(P) = {open halfspaces containing > n− k points of P}
• Tk =

⋂
{h | h ∈ Hk(P)}

• E.g., T1 = conv(P), Tn/(d+1) contains centerpoint of P
• If Tk 6= ∅, center ball = largest ball inside Tk
• If Tk = ∅, Tukey ball = smallest ball intersecting all
halfspaces Hk(P)

Our result
Center ball and Tukey ball can be computed in Od(nd−1 logn)
expected time

Thank you!
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