Fast Algorithms for Geometric Consensuses

Sariel Har-Peled ${ }^{1} \quad$ Mitchell Jones 1
SoCG 2020, June 23-26
${ }^{1}$ University of Illinois at Urbana-Champaign

The yolk: problem setup

The yolk: problem setup

- ℓ is a median line if $\geq\lceil n / 2\rceil$ points of P lie on either side

The yolk: problem setup

- ℓ is a median line if $\geq\lceil n / 2\rceil$ points of P lie on either side

The yolk: problem setup

- ℓ is a median line if $\geq\lceil n / 2\rceil$ points of P lie on either side
- ℓ is extremal if it passes through 2 points of P

The yolk: problem setup

- ℓ is a median line if $\geq\lceil n / 2\rceil$ points of P lie on either side
- ℓ is extremal if it passes through 2 points of P
- Extremal yolk is smallest radius ball intersecting all extremal median lines

The yolk: problem setup

- ℓ is a median line if $\geq\lceil n / 2\rceil$ points of P lie on either side
- ℓ is extremal if it passes through 2 points of P
- Extremal yolk is smallest radius ball intersecting all extremal median lines

The yolk: problem setup

- ℓ is a median line if $\geq\lceil n / 2\rceil$ points of P lie on either side
- ℓ is extremal if it passes through 2 points of P
- Extremal yolk is smallest radius ball intersecting all extremal median lines
- Yolk is smallest radius ball intersecting all median lines
- Yolk is smallest radius ball intersecting all median lines
- Motivation: voting theory (generalizes plurality point)

The yolk

- Yolk is smallest radius ball intersecting all median lines
- Motivation: voting theory (generalizes plurality point)
yolk \neq extremal yolk [Stone and Tovey, 1992]

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]
- $O\left(n^{4 / 3} \log ^{O(1)} n\right)$ in \mathbb{R}^{2} for yolk and extremal yolk [de Berg, Gudmundsson, et al., 2018]

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]
- $O\left(n^{4 / 3} \log ^{O(1)} n\right)$ in \mathbb{R}^{2} for yolk and extremal yolk [de Berg, Gudmundsson, et al., 2018]
$(1+\varepsilon)$-apx in \mathbb{R}^{2} :

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]
- $O\left(n^{4 / 3} \log ^{O(1)} n\right)$ in \mathbb{R}^{2} for yolk and extremal yolk [de Berg, Gudmundsson, et al., 2018]
$(1+\varepsilon)$-apx in \mathbb{R}^{2} :
- $O\left(n \log ^{7} n \log ^{4}(1 / \varepsilon)\right)$ for yolk [Gudmundsson and Wong, 2019]

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]
- $O\left(n^{4 / 3} \log ^{O(1)} n\right)$ in \mathbb{R}^{2} for yolk and extremal yolk [de Berg, Gudmundsson, et al., 2018]
$(1+\varepsilon)$-apx in \mathbb{R}^{2} :
- $O\left(n \log ^{7} n \log ^{4}(1 / \varepsilon)\right)$ for yolk [Gudmundsson and Wong, 2019]
- $O\left(\left(n / \varepsilon^{3}\right) \log ^{3} n\right)$ for extremal yolk [de Berg, Chung, et al., 2019]

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]
- $O\left(n^{4 / 3} \log ^{O(1)} n\right)$ in \mathbb{R}^{2} for yolk and extremal yolk [de Berg, Gudmundsson, et al., 2018]
$(1+\varepsilon)$-apx in \mathbb{R}^{2} :
- $O\left(n \log ^{7} n \log ^{4}(1 / \varepsilon)\right)$ for yolk [Gudmundsson and Wong, 2019]
- $O\left(\left(n / \varepsilon^{3}\right) \log ^{3} n\right)$ for extremal yolk [de Berg, Chung, et al., 2019]

Our result

In $\mathbb{R}^{2}: O(n \log n)$ expected time for yolk/extremal yolk

Previous work \& our results

Exact:

- $O_{d}\left(n^{(d+1)^{2}}\right)$ for yolk (improved to $O\left(n^{4}\right)$ in $\left.\mathbb{R}^{2}\right)$ [Tovey, 1992]
- $O\left(n^{4 / 3} \log ^{O(1)} n\right)$ in \mathbb{R}^{2} for yolk and extremal yolk [de Berg, Gudmundsson, et al., 2018]
$(1+\varepsilon)$-apx in \mathbb{R}^{2} :
- $O\left(n \log ^{7} n \log ^{4}(1 / \varepsilon)\right)$ for yolk [Gudmundsson and Wong, 2019]
- $O\left(\left(n / \varepsilon^{3}\right) \log ^{3} n\right)$ for extremal yolk [de Berg, Chung, et al., 2019]

Our result

In \mathbb{R}^{2} : $O(n \log n)$ expected time for yolk/extremal yolk, and
$O_{d}\left(n^{d-1} \log n\right)$ for \mathbb{R}^{d}

Implicit LPs

- Extremal median lines induced by 2 points of P
$\Longrightarrow \leq\binom{ n}{2}$ implicit constraints

Implicit LPs

- Extremal median lines induced by 2 points of P
$\Longrightarrow \leq\binom{ n}{2}$ implicit constraints

Implicit LPs

- Extremal median lines induced by 2 points of P
$\Longrightarrow \leq\binom{ n}{2}$ implicit constraints

- Solve LP in $O\left(n^{2}\right)$ time

Implicit LPs

- Extremal median lines induced by 2 points of P
$\Longrightarrow \leq\binom{ n}{2}$ implicit constraints

- Solve LP in $O\left(n^{2}\right)$ time
- Faster?

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for $L(P)$

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for $L(P)$

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for $L(P)$

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for L(P)

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $L(Q)=U_{i=1}^{r} L\left(Q_{i}\right)$

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for L(P)

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $L(Q)=U_{i=1}^{r} L\left(Q_{i}\right)$

Result (using [Chan, 2004])
Given P, can compute extremal yolk in $O(D(n))$ expected time.

Solving the implicit LP

- Uses Chan's framework for implicit LPs [Chan, 2004]
- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for L(P)

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $L(Q)=U_{i=1}^{r} L\left(Q_{i}\right)$

Result (using [Chan, 2004])
Given P, can compute extremal yolk in $O(D(n))$ expected time.

Preliminary I: k-levels

Definition: k-levels

Given lines L, k-level $=\{$ points lying above or on k lines of $L\}$.

Preliminary I: k-levels

Definition: k-levels

Given lines L, k-level $=\{$ points lying above or on k lines of $L\}$.

Preliminary I: k-levels

Definition: k-levels

Given lines L, k-level $=\{$ points lying above or on k lines of $L\}$.

Preliminary I: k-levels

Definition: k-levels

Given lines L, k-level $=\{$ points lying above or on k lines of $L\}$.

Preliminary I: k-levels

Definition: k-levels

Given lines L, k-level $=\{$ points lying above or on k lines of $L\}$.

Preliminary II: Zones

Definition: Zone of a surface
Given lines L, curve γ, the zone $\mathcal{Z}(\gamma, L)$ are cells of $\mathcal{A}(L)$ intersecting γ.

Lemma [Aronov et al., 1993, de Berg, Dobrindt, et al., 1995]
$\mathcal{Z}(\gamma, L)$ can be computed in $O(n \log n)$ expected time.

Computing the extremal yolk

- P points, $L(P)$ extremal median lines

Computing the extremal yolk

- P points, $L(P)$ extremal median lines
- In the dual:

Computing the extremal yolk

- P points, $L(P)$ extremal median lines
- In the dual:
- Points \Longleftrightarrow lines

Computing the extremal yolk

- P points, $L(P)$ extremal median lines
- In the dual:
- Points \Longleftrightarrow lines
- Ball \Longleftrightarrow region R between hyperbola

Computing the extremal yolk

- P points, $L(P)$ extremal median lines
- In the dual:
- Points \Longleftrightarrow lines
- Ball \Longleftrightarrow region R between hyperbola
- Extremal median line \Longleftrightarrow vertex of the $n / 2$-level

The key subproblem

Is there a vertex of the $n / 2$-level outside R ?

The key subproblem

Is there a vertex of the $n / 2$-level outside R ?
Check vertices of $\mathcal{A}(L(P))$ near boundary of R !

The key subproblem

Task: Is there a vertex of $n / 2$-level in $\mathbb{R}^{2} \backslash R$?

The key subproblem

Task: Is there a vertex of $n / 2$-level in $\mathbb{R}^{2} \backslash R$?

Idea: Compute zone of ∂R

The key subproblem

Task: Is there a vertex of $n / 2$-level in $\mathbb{R}^{2} \backslash R$?

Idea: Compute zone of ∂R, walk around vertices in zone

The key subproblem

Task: Is there a vertex of $n / 2$-level in $\mathbb{R}^{2} \backslash R$?

Idea: Compute zone of ∂R, walk around vertices in zone, check if any vertex in $\mathbb{R}^{2} \backslash R$ has level $n / 2$.

The key subproblem

Task: Is there a vertex of $n / 2$-level in $\mathbb{R}^{2} \backslash R$?

Idea: Compute zone of ∂R, walk around vertices in zone, check if any vertex in $\mathbb{R}^{2} \backslash R$ has level $n / 2$.

Result: Decider takes $O(n \log n)$ time.

Solving the implicit LP

- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for L(P)

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $L(Q)=U_{i=1}^{r} L\left(Q_{i}\right)$

Solving the implicit LP

- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for L(P)

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $L(Q)=U_{i=1}^{r} L\left(Q_{i}\right)$

Solving the implicit LP

- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for $L(P)$

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $H(Q)=\cup_{i=1}^{r} H\left(Q_{i}\right) \checkmark$

Solving the implicit LP

- P: a set of points; $n=|P|$
- $L(P)$: extremal median lines induced by P
- Goal: compute a solution for $L(P)$

For any $Q \subseteq P, m=|Q|$, assume in $D(m)$ time,
(a) Given Q, candidate ball b: does b violate $L(Q)$?
(b) Given Q : construct $O(1)$ sets $Q_{1}, \ldots, Q_{r},\left|Q_{i}\right| \leq \alpha m$, $H(Q)=\cup_{i=1}^{r} H\left(Q_{i}\right) \checkmark$

Our result

$D(m)=O_{d}\left(m^{d-1} \log m\right) \Longrightarrow$
extremal yolk in $O_{d}\left(n^{d-1} \log n\right)$ expected time.

Other applications I

- Yolk: Smallest ball intersecting all median hyperplanes

Other applications I

- Yolk: Smallest ball intersecting all median hyperplanes
- Egg: Smallest ball intersecting all extremal hyperplanes

Other applications I

- Yolk: Smallest ball intersecting all median hyperplanes
- Egg: Smallest ball intersecting all extremal hyperplanes
- Easy modification! Check if any vertex of $\mathcal{A}(L(P))$ lies outside R

$\Longrightarrow O_{d}\left(n^{d-1} \log n\right)$ expected time

Other applications II

- $H_{k}(P)=\{$ open halfspaces containing $>n-k$ points of $P\}$
- $\mathcal{T}_{k}=\bigcap\left\{h \mid h \in H_{k}(P)\right\}$

Other applications II

- $H_{k}(P)=\{$ open halfspaces containing $>n-k$ points of $P\}$
- $\mathcal{T}_{k}=\bigcap\left\{h \mid h \in H_{k}(P)\right\}$
- E.g., $\mathcal{T}_{1}=\operatorname{conv}(P), \mathcal{T}_{n /(d+1)}$ contains centerpoint of P

Other applications II

- $H_{k}(P)=\{$ open halfspaces containing $>n-k$ points of $P\}$
- $\mathcal{T}_{k}=\bigcap\left\{h \mid h \in H_{k}(P)\right\}$
- E.g., $\mathcal{T}_{1}=\operatorname{conv}(P), \mathcal{T}_{n /(d+1)}$ contains centerpoint of P
- If $\mathcal{T}_{k} \neq \varnothing$, center ball = largest ball inside \mathcal{T}_{k}

Other applications II

- $H_{k}(P)=\{$ open halfspaces containing $>n-k$ points of $P\}$
- $\mathcal{T}_{k}=\bigcap\left\{h \mid h \in H_{k}(P)\right\}$
- E.g., $\mathcal{T}_{1}=\operatorname{conv}(P), \mathcal{T}_{n /(d+1)}$ contains centerpoint of P
- If $\mathcal{T}_{k} \neq \varnothing$, center ball = largest ball inside \mathcal{T}_{k}
- If $\mathcal{T}_{k}=\varnothing$, Tukey ball = smallest ball intersecting all halfspaces $H_{k}(P)$

Other applications II

- $H_{k}(P)=\{$ open halfspaces containing $>n-k$ points of $P\}$
- $\mathcal{T}_{k}=\bigcap\left\{h \mid h \in H_{k}(P)\right\}$
- E.g., $\mathcal{T}_{1}=\operatorname{conv}(P), \mathcal{T}_{n /(d+1)}$ contains centerpoint of P
- If $\mathcal{T}_{k} \neq \varnothing$, center ball = largest ball inside \mathcal{T}_{k}
- If $\mathcal{T}_{k}=\varnothing$, Tukey ball = smallest ball intersecting all halfspaces $H_{k}(P)$

Our result

Center ball and Tukey ball can be computed in $O_{d}\left(n^{d-1} \log n\right)$ expected time

Other applications II

- $H_{k}(P)=\{$ open halfspaces containing $>n-k$ points of $P\}$
- $\mathcal{T}_{k}=\bigcap\left\{h \mid h \in H_{k}(P)\right\}$
- E.g., $\mathcal{T}_{1}=\operatorname{conv}(P), \mathcal{T}_{n /(d+1)}$ contains centerpoint of P
- If $\mathcal{T}_{k} \neq \varnothing$, center ball = largest ball inside \mathcal{T}_{k}
- If $\mathcal{T}_{k}=\varnothing$, Tukey ball = smallest ball intersecting all halfspaces $H_{k}(P)$

Our result

Center ball and Tukey ball can be computed in $O_{d}\left(n^{d-1} \log n\right)$ expected time

Thank you!

References i

Richard E. Stone and Craig A. Tovey. Limiting median lines do not suffice to determine the yolk. Social Choice and Welfare, 9(1): 33-35, 1992.
: Craig A. Tovey. A polynomial-time algorithm for computing the yolk in fixed dimension. Math. Program., 57: 259-277, 1992.
(- Mark de Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing plurality points. ACM Trans. Algorithms, 14(3): 36:1-36:23, 2018.
圊 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games without computing median lines. 33th Conf. Artificial Intell. (AAAI),

Mark de Berg, Jonathan Chung, and Joachim Gudmundsson. Computing the Yolk in Spatial Voting Games. 2019.

Timothy M. Chan. An optimal randomized algorithm for maximum Tukey depth. Proc. 15th ACM-SIAM Sympos. Discrete Algs. (SODA), 430-436, 2004.
E Boris Aronov, Marco Pellegrini, and Micha Sharir. On the zone of a surface in a hyperplane arrangement. Discrete Comput. Geom., 9: 177-186, 1993.
(-i Mark de Berg, Katrin Dobrindt, and Otfried Schwarzkopf. On lazy randomized incremental construction. Discrete Comput. Geom., 14(3): 261-286, 1995.

