Active Learning a Convex Body in Low Dimensions

Sariel Har-Peled¹ <u>Mitchell Jones</u>¹ Saladi Rahul² ICALP 2020, July 8–11

¹University of Illinois at Urbana-Champaign, Urbana, USA

²Indian Institute of Science, Bangalore, India

The problem

Problem

Input: $P \subset \mathbb{R}^2$, oracle for unknown convex body C.

Oracle: Separation oracle.

Goal: Compute $P \cap C$ using fewest number of oracle queries.

The problem

Problem

Input: $P \subset \mathbb{R}^2$, oracle for unknown convex body C.

Oracle: Separation oracle.

Goal: Compute $P \cap C$ using fewest number of oracle queries.

Motivation: Active learning

- · Input space X
- Learner data: $x_1, \ldots, x_n \in X$ (without labels)
- Learner can query oracle for label of any $q \in X$
- Build classifier using few queries
- What queries to choose?

Additional motivation

Separation oracles are well-known (OR)

Additional motivation

- Separation oracles are well-known (OR)
- · Computational problems with oracle access:
 - · Nearest-neighbor oracles [Har-Peled et al., 2016]
 - Proximity probe [Panahi et al., 2013]
 - · Linear queries [Ezra and Sharir, 2019]

· Allow error in classification

- · Allow error in classification
- Algorithm:

- · Allow error in classification
- Algorithm:
 - 1. Randomly sample input

- · Allow error in classification
- Algorithm:
 - 1. Randomly sample input
 - 2. Obtain labels for sample

- · Allow error in classification
- Algorithm:
 - 1. Randomly sample input
 - 2. Obtain labels for sample
 - 3. Classify sample

- · Allow error in classification
- Algorithm:
 - 1. Randomly sample input
 - 2. Obtain labels for sample
 - 3. Classify sample
- Size of sample?

 Misclassified points = symmetric difference of learned and true classifier

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane ⇒ symmetric difference is a wedge

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane ⇒ symmetric difference is a wedge
- Wedge has finite VC dimension \implies random sample of size $\approx O(\varepsilon^{-1} \log \varepsilon^{-1}) \implies \varepsilon n \text{ error}$

- Misclassified points = symmetric difference of learned and true classifier
- \cdot Halfplane \implies symmetric difference is a wedge
- Wedge has finite VC dimension \implies random sample of size $\approx O(\varepsilon^{-1}\log \varepsilon^{-1})$ $\implies \varepsilon n$ error
- Scheme fails for arbitrary convex regions

Hard vs. easy instances

• Worst case: query all points

Hard vs. easy instances

- · Worst case: query all points
- Goal: design instance sensitive algorithms

• $F_{in} =$ convex polygon with fewest vertices s.t. $F_{in} \subseteq C$ and $C \cap P = F_{in} \cap P$.

- F_{in} = convex polygon with fewest vertices s.t. $F_{in} \subseteq C$ and $C \cap P = F_{in} \cap P$.
- $F_{\text{out}} = \text{convex polygon with fewest vertices s.t. } C \subseteq F_{\text{out}}$ and $C \cap P = F_{\text{out}} \cap P$.

- $F_{in} = \text{convex polygon with fewest vertices s.t. } F_{in} \subseteq C \text{ and } C \cap P = F_{in} \cap P.$
- $F_{\text{out}} = \text{convex polygon with fewest vertices s.t. } C \subseteq F_{\text{out}}$ and $C \cap P = F_{\text{out}} \cap P$.
- Separation price $\sigma(P,C) = |F_{\rm in}| + |F_{\rm out}|$.

- F_{in} = convex polygon with fewest vertices s.t. $F_{in} \subseteq C$ and $C \cap P = F_{in} \cap P$.
- $F_{\text{out}} = \text{convex polygon with fewest vertices s.t. } C \subseteq F_{\text{out}}$ and $C \cap P = F_{\text{out}} \cap P$.
- Separation price $\sigma(P,C) = |F_{in}| + |F_{out}|$.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	$O(k(P)\log n)$ (†)

(†) k(P) = largest # of pts of P in convex position

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	O(k(P) log n) (†)
Classify (2D)	$\sigma(P,C)$	$O(\sigma(P,C)\log^2 n)$

(†) k(P) = largest # of pts of P in convex position

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	O(k(P) log n) (†)
Classify (2D)	$\sigma(P,C)$	$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	O(k(P) log n) (†)

(†) k(P) = largest # of pts of P in convex position

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	O(k(P) log n) (†)
Classify (2D)	$\sigma(P,C)$	$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$ (†)
Verify in (2D)	$ F_{\rm in} $	$O(F_{\rm in} \log n)$

(†) k(P) = largest # of pts of P in convex position

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	O(k(P) log n) (†)
Classify (2D)	$\sigma(P,C)$	$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$ (†)
Verify in (2D)	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out (2D)	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$ (‡)

- (†) k(P) = largest # of pts of P in convex position
- (‡) Randomized, w.h.p

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	O(k(P) log n) (†)
Classify (2D)	$\sigma(P,C)$	$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	O(k(P) log n) (†)
Verify in (2D)	$ F_{ m in} $	$O(F_{\rm in} \log n)$
Verify out (2D)	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$ (‡)

- (†) k(P) = largest # of pts of P in convex position
- (‡) Randomized, w.h.p

Our result

The greedy algorithm uses $O(k \log n)$ queries.

(k = largest # of pts of P in convex position.)

Our result

The greedy algorithm uses $O(k \log n)$ queries.

(k = largest # of pts of P in convex position.)

• Previously known: $O(k \log k \log n)$ [Kane et al., 2017, inference dimension]

Our result

The greedy algorithm uses $O(k \log n)$ queries.

(k = largest # of pts of P in convex position.)

- Previously known: $O(k \log k \log n)$ [Kane et al., 2017, inference dimension]
- Implementation time: $O(n \log^2 n \log \log n + T \cdot k \log n)$, T = query time

Our result

The greedy algorithm uses $O(k \log n)$ queries.

(k = largest # of pts of P in convex position.)

- Previously known: $O(k \log k \log n)$ [Kane et al., 2017, inference dimension]
- Implementation time: $O(n \log^2 n \log \log n + T \cdot k \log n)$, T = query time
- P chosen UAR from $[0,1]^2$

$$\implies \mathbb{E}[k] = \Theta(n^{1/3}) \implies O(n^{1/3} \log n)$$

• Maintain approximation $B \subseteq C$

- Maintain approximation $B \subseteq C$
- Operations:

- Maintain approximation $B \subseteq C$
- · Operations:
 - 1. **expand**(p): Update B = conv(B + p)
 - 2. **remove**(ℓ^+): Classify points $P \cap \ell^+$ as outside C

- Maintain approximation $B \subseteq C$
- · Operations:
 - 1. **expand**(p): Update B = conv(B + p)
 - 2. **remove**(ℓ^+): Classify points $P \cap \ell^+$ as outside C
- $c \in \mathbb{R}^2$ is a centerpoint for P if for all halfspaces ℓ^+ : $c \in \ell^+ \implies |P \cap \ell^+| \ge |P|/3$.

 $U \subseteq P$ unclassified points. While $U \neq \emptyset$:

1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$

 $U \subseteq P$ unclassified points. While $U \neq \emptyset$:

1. ℓ^+ = halfspace tangent to B maximizing $|\ell^+ \cap U|$

- 1. ℓ^+ = halfspace tangent to B maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$

- 1. $\ell^+ = \text{halfspace tangent to } B \text{ maximizing } |\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:

(A)
$$c \in C \implies expand(c)$$

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:
 - (A) $c \in C \implies expand(c)$
 - (B) $c \notin C$, h is a separating line \implies remove(h)

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:
 - (A) $c \in C \implies expand(c)$
 - (B) $c \notin C$, h is a separating line \implies remove(h)

Animation

· Count visible pairs of points

- Count visible pairs of points
- · In each iteration:

- Count visible pairs of points
- · In each iteration:
 - (A) Pairs lose visibility

- Count visible pairs of points
- · In each iteration:
 - (A) Pairs lose visibility
 - (B) Classify points

- Count visible pairs of points
- · In each iteration:
 - (A) Pairs lose visibility
 - (B) Classify points

Our result

The greedy algorithm uses $O(k \log n)$ queries.

(k = largest # of pts of P in convex position.)

Extending the algorithm to 3D

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:
 - (A) $c \in C \implies \text{expand}(c)$
 - (B) $c \notin C$, h is a separating line \implies remove(h)

Extending the algorithm to 3D

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:
 - (A) $c \in C \implies \text{expand}(c)$
 - (B) $c \notin C$, h is a separating plane \implies remove(h)

• When B is expanded, pairs of points do not lose visibility!

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):
 - 1. $G_B = (P, E), (p, q) \in E \iff pq \text{ avoids } B$
 - 2. Hypergraph $H_B = (P, \mathcal{E}), \{p, q, r\} \in \mathcal{E} \iff$ triangle pqr avoids B

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):
 - 1. $G_B = (P, E), (p, q) \in E \iff pq \text{ avoids } B$
 - 2. Hypergraph $H_B = (P, \mathcal{E}), \{p, q, r\} \in \mathcal{E} \iff$ triangle pqr avoids B

Our result

Greedy algorithm classifies all points using $O(k \log n)$ queries.

Conclusions

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	$O(k(P)\log n)$
		$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	$O(k(P)\log n)$
		$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

Shaving log factors?

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	$O(k(P)\log n)$
		$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

- Shaving log factors?
- Near-optimal solution in 3D?

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	$O(k(P)\log n)$
		$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

- Shaving log factors?
- · Near-optimal solution in 3D?
- · Higher dimensions?

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P,C)$	$O(k(P)\log n)$
		$O(\sigma(P,C)\log^2 n)$
Classify (3D)	_	$O(k(P)\log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\mathrm{out}} $	$O(F_{\text{out}} \log n)$

- Shaving log factors?
- Near-optimal solution in 3D?
- · Higher dimensions?

Thank you!

References i

- S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space exploration via proximity search. Discrete Comput. Geom., 56(2): 357–376, 2016.
- F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity probing algorithm for metrology. Int. Conf. on Automation Science and Engineering, CASE 2013, 342–349, 2013.
- Esther Ezra and Micha Sharir. A nearly quadratic bound for point-location in hyperplane arrangements, in the linear decision tree model. Discrete Comput. Geom., 61(4): 735–755, 2019.
- Daniel M. Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active classification with comparison queries. Proc. 58th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), 355–366, 2017.

References ii

D. Angluin. Queries and concept learning. Machine Learning, 2(4): 319–342, 1987.