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The problem

Problem
Input: P C R?, oracle for unknown convex body C.

Oracle: Separation oracle.

Goal: Compute PN C using fewest number of oracle queries.
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Motivation: Active learning

+ Input space X

- Learner data: x1,...,Xn € X (without labels)

- Learner can query oracle for label of any g € X
- Build classifier using few queries

- What queries to choose?
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Additional motivation

- Separation oracles are well-known (OR)
- Computational problems with oracle access:

- Nearest-neighbor oracles [Har-Peled et al., 2016]
- Proximity probe [Panahi et al.,, 2013]
- Linear queries [Ezra and Sharir, 2019]
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One approach: PAC learning

- Allow error in classification
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One approach: PAC learning

- Allow error in classification
- Algorithm:
1. Randomly sample input

2. Obtain labels for sample
3. Classify sample

- Size of sample?
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One approach: PAC learning

- Misclassified points = symmetric difference of learned and
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One approach: PAC learning

- Misclassified points = symmetric difference of learned and
true classifier

- Halfplane = symmetric difference is a wedge

- Wedge has finite VC dimension = random sample of
size ~# O(e7'loge™") = en error

- Scheme fails for arbitrary convex regions

7118



Hard vs. easy instances

- Worst case: query all points
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Hard vs. easy instances

- Worst case: query all points

- Goal: design instance sensitive algorithms
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- Fi, = convex polygon with fewest vertices st. F, € C and
CNP=F,NP.
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- Fi, = convex polygon with fewest vertices st. F, € C and
CNP=F,NP.
- Fout = convex polygon with fewest vertices st. C C Fout
and CNP = Fout NP
- Separation price o(P, C) = |Fin| + |Fout|-
Lemma
Any algorithm must make at least o(P, C) oracle queries.
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Problem Lowerbound Upperbound

Classify (2D) a(P,0) O(R(P) logn) (1)

(1) R(P) = largest # of pts of P in convex position
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Our result
The greedy algorithm uses O(klogn) queries.

(kR = largest # of pts of P in convex position.)
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Our result
The greedy algorithm uses O(klogn) queries.

(kR = largest # of pts of P in convex position.)

- Previously known: O(klogklogn) [Kane et al, 2017,
inference dimension]

- Implementation time:

O(nlog®nloglogn+ T - klogn), T = query time
- P chosen UAR from [0, 1]?

— E[R] = ©(n'?) = 0(n"?logn)
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The greedy algorithm: preliminaries

- Maintain approximation B C C
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The greedy algorithm: preliminaries

- Maintain approximation B C C
- Operations:
1. expand(p): Update B = conv(B + p)
2. remove(¢T): Classify points PN ¢* as outside C
- ¢ € R? is a centerpoint for P if for all halfspaces ¢7:
celt = |PNne| > 1P| /3.
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The greedy algorithm

U C P unclassified points. While U # @:
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Animation
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Analysis

- Count visible pairs of points
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Analysis

- Count visible pairs of points
- In each iteration:

(A) Pairs lose visibility
(B) Classify points

Our result

The greedy algorithm uses O(klogn)
queries.

(R = largest # of pts of P in convex
position.)
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Extending the algorithm to 3D

U C P unclassified points. While U # @:

1. £+ = halfspace tangent to B maximizing [¢* N U]

2. ¢ = centerpoint of £ NU
3. Query oracle using c:
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U C P unclassified points. While U # @:

1. £+ = halfspace tangent to B maximizing [¢* N U]

2. ¢ = centerpoint of £ NU
3. Query oracle using c:

(A) ce C = expand(c)
(B) c €C, hisaseparating plane = remove(h)
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Extending the analysis to 3D

- When B is expanded, pairs of points do not lose visibility!
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- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.rt B):
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2. Hypergraph Hg = (P, &), {p,q,r} € £ < triangle pgr
avoids B

17/18



Extending the analysis to 3D

- When B is expanded, pairs of points do not lose visibility!

- Need to consider triples of points
- Maintain two graphs (w.rt B):
1. Gg = (P,E), (p,q) € E < pgq avoids B
2. Hypergraph Hg = (P, &), {p,q,r} € £ < triangle pgr
avoids B

Our result
Greedy algorithm classifies all points using O(klogn) queries.
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Conclusions



Conclusion & open problems

Problem Lowerbound Upperbound
. O(R(P) logn)
P,
Classify (2D) a(P,C) 0((P, C) log? n)
Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin|logn)
Verify out | Fout| O(|Fout | log n)
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Conclusion & open problems

Problem Lowerbound Upperbound
. O(R(P) logn)
P,
Classify (2D) a(P,C) 0((P, C) log? n)
Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin|logn)
Verify out |Fout| O(|Fout | log n)
- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?
Thank you!

18/18



References i

B

S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space
exploration via proximity search. Discrete Comput. Geom., 56(2):
357-376, 2016.

F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An
efficient proximity probing algorithm for metrology. Int. Conf. on
Automation Science and Engineering, CASE 2013, 342-349, 2013.

Esther Ezra and Micha Sharir. A nearly quadratic bound for
point-location in hyperplane arrangements, in the linear
decision tree model. Discrete Comput. Geom., 61(4): 735-755, 2019.

Daniel M. Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang.
Active classification with comparison queries. Proc. 58th Annu.
IEEE Sympos. Found. Comput. Sci. (FOCS), 355-366, 2017.


http://dx.doi.org/10.1007/s00454-016-9801-7
http://dx.doi.org/10.1007/s00454-016-9801-7
http://dx.doi.org/10.1109/CoASE.2013.6653995
http://dx.doi.org/10.1109/CoASE.2013.6653995
http://dx.doi.org/10.1007/s00454-018-0043-8
http://dx.doi.org/10.1007/s00454-018-0043-8
http://dx.doi.org/10.1007/s00454-018-0043-8
http://dx.doi.org/10.1109/FOCS.2017.40

References ii

@ D.Angluin. Queries and concept learning. Machine Learning,
2(4): 319-342, 1987.


http://dx.doi.org/10.1007/BF00116828

	Conclusions

