Active Learning a Convex Body in Low Dimensions

Sariel Har-Peled ${ }^{1}$ Mitchell Jones ${ }^{1}$ Saladi Rahul ${ }^{2}$
ICALP 2020, July 8-11
${ }^{1}$ University of Illinois at Urbana-Champaign, Urbana, USA
${ }^{2}$ Indian Institute of Science, Bangalore, India

The problem

Problem

Input: $P \subset \mathbb{R}^{2}$, oracle for unknown convex body C.
Oracle: Separation oracle.
Goal: Compute $P \cap C$ using fewest number of oracle queries.

The problem

Problem

Input: $P \subset \mathbb{R}^{2}$, oracle for unknown convex body C.
Oracle: Separation oracle.
Goal: Compute $P \cap C$ using fewest number of oracle queries.

Motivation: Active learning

- Input space X
- Learner data: $x_{1}, \ldots, x_{n} \in X$ (without labels)
- Learner can query oracle for label of any $q \in X$
- Build classifier using few queries
-What queries to choose?

Additional motivation

- Separation oracles are well-known (OR)

Additional motivation

- Separation oracles are well-known (OR)
- Computational problems with oracle access:
- Nearest-neighbor oracles [Har-Peled et al., 2016]
- Proximity probe [Panahi et al., 2013]
- Linear queries [Ezra and Sharir, 2019]

One approach: PAC learning

- Allow error in classification

One approach: PAC learning

- Allow error in classification
- Algorithm:

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input
2. Obtain labels for sample

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

- Size of sample?

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \Longrightarrow symmetric difference is a wedge

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \Longrightarrow symmetric difference is a wedge
- Wedge has finite VC dimension \Longrightarrow random sample of size $\approx O\left(\varepsilon^{-1} \log \varepsilon^{-1}\right) \Longrightarrow \varepsilon n$ error

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \Longrightarrow symmetric difference is a wedge
- Wedge has finite VC dimension \Longrightarrow random sample of size $\approx O\left(\varepsilon^{-1} \log \varepsilon^{-1}\right) \Longrightarrow$ हn error
- Scheme fails for arbitrary convex regions

Hard vs. easy instances

- Worst case: query all points

Hard vs. easy instances

- Worst case: query all points
- Goal: design instance sensitive algorithms

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.
- $F_{\text {out }}=$ convex polygon with fewest vertices s.t. $C \subseteq F_{\text {out }}$ and $C \cap P=F_{\text {out }} \cap P$.

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.
- $F_{\text {out }}=$ convex polygon with fewest vertices s.t. $C \subseteq F_{\text {out }}$ and $C \cap P=F_{\text {out }} \cap P$.
- Separation price $\sigma(P, C)=\left|F_{\text {in }}\right|+\left|F_{\text {out }}\right|$.

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.
- $F_{\text {out }}=$ convex polygon with fewest vertices s.t. $C \subseteq F_{\text {out }}$ and $C \cap P=F_{\text {out }} \cap P$.
- Separation price $\sigma(P, C)=\left|F_{\text {in }}\right|+\left|F_{\text {out }}\right|$.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$

$(\dagger) k(P)=$ largest $\#$ of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$

$(\dagger) k(P)=$ largest $\#$ of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$
Verify in (2D)	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$
Verify in (2D)	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out (2D)	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)(\ddagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position
(\ddagger) Randomized, w.h.p

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$
Verify in (2D)	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out (2D)	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)(\ddagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position
(\ddagger) Randomized, w.h.p

Remarks

Our result

The greedy algorithm uses $O(k \log n)$ queries.
($k=$ largest \# of pts of P in convex position.)

Remarks

Our result

The greedy algorithm uses $O(k \log n)$ queries.
($k=$ largest \# of pts of P in convex position.)

- Previously known: O(klog k log n) [Kane et al., 2017, inference dimension]

Remarks

Our result

The greedy algorithm uses $O(k \log n)$ queries.
($k=$ largest \# of pts of P in convex position.)

- Previously known: O(klog klogn) [Kane et al., 2017, inference dimension]
- Implementation time:
$O\left(n \log ^{2} n \log \log n+T \cdot k \log n\right), T=$ query time

Remarks

Our result

The greedy algorithm uses $O(k \log n)$ queries.
($k=$ largest \# of pts of P in convex position.)

- Previously known: O(klog k logn) [Kane et al., 2017, inference dimension]
- Implementation time:
$O\left(n \log ^{2} n \log \log n+T \cdot k \log n\right), T=$ query time
- P chosen UAR from $[0,1]^{2}$

$$
\Longrightarrow \mathbb{E}[k]=\Theta\left(n^{1 / 3}\right) \Longrightarrow O\left(n^{1 / 3} \log n\right)
$$

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$
- Operations:

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$
- Operations:

1. $\operatorname{expand}(p):$ Update $B=\operatorname{conv}(B+p)$
2. remove(ℓ^{+}): Classify points $P \cap \ell^{+}$as outside C

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$
- Operations:

1. $\operatorname{expand}(p):$ Update $B=\operatorname{conv}(B+p)$
2. remove $\left(\ell^{+}\right)$: Classify points $P \cap \ell^{+}$as outside C

- $c \in \mathbb{R}^{2}$ is a centerpoint for P if for all halfspaces ℓ^{+}: $c \in \ell^{+} \Longrightarrow\left|P \cap \ell^{+}\right| \geq|P| / 3$.

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow$ expand(c)

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow$ expand (c)
(B) $C \notin C, h$ is a separating line \Longrightarrow remove (h)

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow$ expand (c)
(B) $C \notin C, h$ is a separating line \Longrightarrow remove (h)

Animation

Analysis

- Count visible pairs of points

Analysis

- Count visible pairs of points
- In each iteration:

Analysis

- Count visible pairs of points
- In each iteration:
(A) Pairs lose visibility

Analysis

- Count visible pairs of points
- In each iteration:
(A) Pairs lose visibility
(B) Classify points

Analysis

- Count visible pairs of points
- In each iteration:
(A) Pairs lose visibility
(B) Classify points

Our result

The greedy algorithm uses $O(k \log n)$ queries.
($k=$ largest \# of pts of P in convex
 position.)

Extending the algorithm to 3D

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow$ expand (c)
(B) $c \notin C, h$ is a separating line \Longrightarrow remove (h)

Extending the algorithm to 3D

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow$ expand (c)
$(B) c \notin C, h$ is a separating plane $\Longrightarrow \operatorname{remove}(h)$

Extending the analysis to 3D

- When B is expanded, pairs of points do not lose visibility!

Extending the analysis to 3D

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points

Extending the analysis to 3D

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):

1. $G_{B}=(P, E),(p, q) \in E \Longleftrightarrow p q$ avoids B
2. Hypergraph $H_{B}=(P, \mathcal{E}),\{p, q, r\} \in \mathcal{E} \Longleftrightarrow$ triangle pqr avoids B

Extending the analysis to 3D

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):

1. $G_{B}=(P, E),(p, q) \in E \Longleftrightarrow p q$ avoids B
2. Hypergraph $H_{B}=(P, \mathcal{E}),\{p, q, r\} \in \mathcal{E} \Longleftrightarrow$ triangle pqr avoids B

Our result

Greedy algorithm classifies all points using $O(k \log n)$ queries.

Conclusions

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?
- Near-optimal solution in 3D?

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?

Thank you!

References i

目
S．Har－Peled，N．Kumar，D．M．Mount，and B．Raichel．Space exploration via proximity search．Discrete Comput．Geom．，56（2）： 357－376， 2016.
（围 F．Panahi，A．Adler，A．F．van der Stappen，and K．Goldberg．An efficient proximity probing algorithm for metrology．Int．Conf．on Automation Science and Engineering，CASE 2013，342－349， 2013.

E－Esther Ezra and Micha Sharir．A nearly quadratic bound for point－location in hyperplane arrangements，in the linear decision tree model．Discrete Comput．Geom．，61（4）：735－755， 2019.
围 Daniel M．Kane，Shachar Lovett，Shay Moran，and Jiapeng Zhang． Active classification with comparison queries．Proc．58th Annu． IEEE Sympos．Found．Comput．Sci．（FOCS），355－366， 2017.

References ii

D. Angluin. Queries and concept learning. Machine Learning, 2(4): 319-342, 1987.

