
Some Geometric Applications of Anti-Chains

Sariel Har-Peled1 Mitchell Jones1

CCCG 2020, August 5–7
1University of Illinois at Urbana-Champaign

1/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)

• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable

• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable

• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V C

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V C

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V D

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V

• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V D

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V

• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V D C

2/12

Partial orderings (posets)

• (V,≺): partially ordered set (poset)
• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]

V D C

2/12

Implicit posets I

• This talk: implicitly defined posets on geometric objects

• Point set P: (P,≺), p ≺ q ⇐⇒ p dominates q
• Anti-chain: downward “staircase” or Pareto-optimal subset
• Quickly find largest Pareto-optimal subset for (P,≺)?

3/12

Implicit posets I

• This talk: implicitly defined posets on geometric objects
• Point set P: (P,≺), p ≺ q ⇐⇒ p dominates q

• Anti-chain: downward “staircase” or Pareto-optimal subset
• Quickly find largest Pareto-optimal subset for (P,≺)?

p

q

3/12

Implicit posets I

• This talk: implicitly defined posets on geometric objects
• Point set P: (P,≺), p ≺ q ⇐⇒ p dominates q
• Anti-chain: downward “staircase” or Pareto-optimal subset

• Quickly find largest Pareto-optimal subset for (P,≺)?

p

q

3/12

Implicit posets I

• This talk: implicitly defined posets on geometric objects
• Point set P: (P,≺), p ≺ q ⇐⇒ p dominates q
• Anti-chain: downward “staircase” or Pareto-optimal subset

• Quickly find largest Pareto-optimal subset for (P,≺)?

3/12

Implicit posets I

• This talk: implicitly defined posets on geometric objects
• Point set P: (P,≺), p ≺ q ⇐⇒ p dominates q
• Anti-chain: downward “staircase” or Pareto-optimal subset
• Quickly find largest Pareto-optimal subset for (P,≺)?

3/12

Implicit posets II

• D: set of regions in Rd

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• Anti-chain: S ⊆ D s.t. ∀d1,d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1 or
loose subset

• Quickly find largest loose subset for (D,≺)?

4/12

Implicit posets II

• D: set of regions in Rd

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• Anti-chain: S ⊆ D s.t. ∀d1,d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1 or
loose subset

• Quickly find largest loose subset for (D,≺)?

d

d′

4/12

Implicit posets II

• D: set of regions in Rd

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• Anti-chain: S ⊆ D s.t. ∀d1,d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1 or
loose subset

• Quickly find largest loose subset for (D,≺)?

d

d′

4/12

Implicit posets II

• D: set of regions in Rd

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• Anti-chain: S ⊆ D s.t. ∀d1,d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1 or
loose subset

• Quickly find largest loose subset for (D,≺)?

4/12

Implicit posets II

• D: set of regions in Rd

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• Anti-chain: S ⊆ D s.t. ∀d1,d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1 or
loose subset

• Quickly find largest loose subset for (D,≺)?

4/12

Computing anti-chains

• Largest anti-chain can be found in O(n2.5) time

• Reduces to max matching in bipartite graph G [Hopcroft
and Karp, 1973]

• Implicit posets =⇒ edges of G are implicit
• Possible speedup?

5/12

Computing anti-chains

• Largest anti-chain can be found in O(n2.5) time
• Reduces to max matching in bipartite graph G [Hopcroft
and Karp, 1973]

• Implicit posets =⇒ edges of G are implicit
• Possible speedup?

5/12

Computing anti-chains

• Largest anti-chain can be found in O(n2.5) time
• Reduces to max matching in bipartite graph G [Hopcroft
and Karp, 1973]

• Implicit posets =⇒ edges of G are implicit

• Possible speedup?

5/12

Computing anti-chains

• Largest anti-chain can be found in O(n2.5) time
• Reduces to max matching in bipartite graph G [Hopcroft
and Karp, 1973]

• Implicit posets =⇒ edges of G are implicit
• Possible speedup?

5/12

The framework

• Insight: algorithmic framework for implicit posets

• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n

• Goal: compute largest anti-chain for (V,≺)

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time

(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time

(iii) Construct D(P) in O(m · T(m)) time

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

6/12

The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

6/12

The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001
• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12

The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001
• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12

The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001

• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12

The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001
• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12

Applications

Largest Pareto-optimal subset

• P: point set

• p dominates q ⇐⇒ p ≥ q coordinate wise
• Q ⊆ P is Pareto-optimal if no point in Q dominates any
other point in Q

8/12

Largest Pareto-optimal subset

• P: point set
• p dominates q ⇐⇒ p ≥ q coordinate wise

• Q ⊆ P is Pareto-optimal if no point in Q dominates any
other point in Q

p

q

8/12

Largest Pareto-optimal subset

• P: point set
• p dominates q ⇐⇒ p ≥ q coordinate wise
• Q ⊆ P is Pareto-optimal if no point in Q dominates any
other point in Q

p

q

8/12

Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with v ≺ u

9/12

Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with u dominating v

9/12

Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with u dominating v

u dominates v ⇐⇒ u ∈ [v1,∞)× . . .× [vd,∞)

9/12

Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with u dominating v

u dominates v ⇐⇒ u ∈ [v1,∞)× . . .× [vd,∞), d-sided
orthogonal range query!

9/12

Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with u dominating v

u dominates v ⇐⇒ u ∈ [v1,∞)× . . .× [vd,∞), d-sided
orthogonal range query!

Queries and deletions in time O((logn/ log logn)d−1) [Chan
and Tsakalidis, 2017].

9/12

Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with u dominating v

u dominates v ⇐⇒ u ∈ [v1,∞)× . . .× [vd,∞), d-sided
orthogonal range query!

Queries and deletions in time O((logn/ log logn)d−1) [Chan
and Tsakalidis, 2017].

Our result
Largest Pareto-optimal subset in Rd in time
O
(
n1.5(logn/ log logn)d−1

)
9/12

Largest loose subset of disks

• D: set of disks in R2

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• S ⊆ D is loose if no disk in S contains another disk in S
• Loose subset ≡ anti-chain in (D,≺)

• Compare to Independent set which is NP-hard

10/12

Largest loose subset of disks

• D: set of disks in R2

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• S ⊆ D is loose if no disk in S contains another disk in S
• Loose subset ≡ anti-chain in (D,≺)

• Compare to Independent set which is NP-hard

10/12

Largest loose subset of disks

• D: set of disks in R2

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• S ⊆ D is loose if no disk in S contains another disk in S

• Loose subset ≡ anti-chain in (D,≺)

• Compare to Independent set which is NP-hard

10/12

Largest loose subset of disks

• D: set of disks in R2

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• S ⊆ D is loose if no disk in S contains another disk in S
• Loose subset ≡ anti-chain in (D,≺)

• Compare to Independent set which is NP-hard

10/12

Largest loose subset of disks

• D: set of disks in R2

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• S ⊆ D is loose if no disk in S contains another disk in S
• Loose subset ≡ anti-chain in (D,≺)

• Compare to Independent set which is NP-hard

10/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with q ≺ d

11/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with d ⊆ q

11/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with d ⊆ q

For each x ∈ D: δx(p) = ‖cx − p‖+ rx.
d ⊆ q ⇐⇒ δd(cq) ≤ rq.

q

d

rq
rd

11/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with d ⊆ q

For each x ∈ D: δx(p) = ‖cx − p‖+ rx.
d ⊆ q ⇐⇒ δd(cq) ≤ rq.

q

d

rq
rd

Dynamically maintain F(p) = mind∈D δd(p)

11/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with d ⊆ q

For each x ∈ D: δx(p) = ‖cx − p‖+ rx.
d ⊆ q ⇐⇒ δd(cq) ≤ rq.

q

d

rq
rd

Dynamically maintain F(p) = mind∈D δd(p) — lower envelope of
surfaces {δd | d ∈ D} in R3

11/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with d ⊆ q

For each x ∈ D: δx(p) = ‖cx − p‖+ rx.
d ⊆ q ⇐⇒ δd(cq) ≤ rq.

q

d

rq
rd

Dynamically maintain F(p) = mind∈D δd(p) — lower envelope of
surfaces {δd | d ∈ D} in R3 — in time O(log10+ε n) [Kaplan et al.,
2017].

11/12

Largest loose subset: the data structure

Largest loose subset ≡ anti-chain in (D,≺)

Query q ∈ D, D(D) returns d ∈ D with d ⊆ q

For each x ∈ D: δx(p) = ‖cx − p‖+ rx.
d ⊆ q ⇐⇒ δd(cq) ≤ rq.

q

d

rq
rd

Dynamically maintain F(p) = mind∈D δd(p) — lower envelope of
surfaces {δd | d ∈ D} in R3 — in time O(log10+ε n) [Kaplan et al.,
2017].

Our result

Largest loose subset of disks in R2 in O
(
n1.5 log10+ε n

)
time 11/12

Conclusion

• Framework for computing anti-chains in implicit posets

• Similar frameworks using dynamic data structures [Efrat
et al., 2001, Cabello and Mulzer, 2020]

• Other results: Largest subset of non-crossing rectangles,
isolated points, ...

• More applications?

Thank you!

12/12

Conclusion

• Framework for computing anti-chains in implicit posets
• Similar frameworks using dynamic data structures [Efrat
et al., 2001, Cabello and Mulzer, 2020]

• Other results: Largest subset of non-crossing rectangles,
isolated points, ...

• More applications?

Thank you!

12/12

Conclusion

• Framework for computing anti-chains in implicit posets
• Similar frameworks using dynamic data structures [Efrat
et al., 2001, Cabello and Mulzer, 2020]

• Other results: Largest subset of non-crossing rectangles,
isolated points, ...

• More applications?

Thank you!

12/12

Conclusion

• Framework for computing anti-chains in implicit posets
• Similar frameworks using dynamic data structures [Efrat
et al., 2001, Cabello and Mulzer, 2020]

• Other results: Largest subset of non-crossing rectangles,
isolated points, ...

• More applications?

Thank you!

12/12

Conclusion

• Framework for computing anti-chains in implicit posets
• Similar frameworks using dynamic data structures [Efrat
et al., 2001, Cabello and Mulzer, 2020]

• Other results: Largest subset of non-crossing rectangles,
isolated points, ...

• More applications?

Thank you!

12/12

References i

Robert P. Dilworth. A decomposition theorem for partially
ordered sets. Annals of Mathematics, 51(1): 161–166, 1950.

John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for
maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):
225–231, 1973.

Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in
bottleneck matching and related problems. Algorithmica, 31(1):
1–28, 2001.

Sergio Cabello and Wolfgang Mulzer. Minimum cuts in
geometric intersection graphs. CoRR, abs/2005.00858, 2020.
arXiv: 2005.00858.

http://dx.doi.org/10.2307/1969503
http://dx.doi.org/10.2307/1969503
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1007/s00453-001-0016-8
http://dx.doi.org/10.1007/s00453-001-0016-8
https://arxiv.org/abs/2005.00858
https://arxiv.org/abs/2005.00858
https://arxiv.org/abs/2005.00858

References ii

Timothy M. Chan and Konstantinos Tsakalidis. Dynamic
orthogonal range searching on the ram, revisited. 33rd Symp. on
Comput. Geom. (SoCG), 28:1–28:13, 2017.

Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and
Micha Sharir. Dynamic planar voronoi diagrams for general
distance functions and their algorithmic applications. 28th
Symp. on Discrete Algorithms (SODA), 2495–2504, 2017.

http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.28
http://dx.doi.org/10.4230/LIPIcs.SoCG.2017.28
http://dx.doi.org/10.1137/1.9781611974782.165
http://dx.doi.org/10.1137/1.9781611974782.165

	Applications

