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Partial orderings (posets)

• (V,≺): partially ordered set (poset)

• Chain: Subset C ⊆ V s.t. all elements are comparable
• Anti-chain: Subset D ⊆ V s.t. all elements are
incomparable

• Chain cover: collection of chains covering V
• Largest anti-chain = smallest chain cover [Dilworth, 1950]
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Implicit posets I

• This talk: implicitly defined posets on geometric objects

• Point set P: (P,≺), p ≺ q ⇐⇒ p dominates q
• Anti-chain: downward “staircase” or Pareto-optimal subset
• Quickly find largest Pareto-optimal subset for (P,≺)?
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Implicit posets II

• D: set of regions in Rd

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• Anti-chain: S ⊆ D s.t. ∀d1,d2 ∈ S, d1 6⊆ d2 and d2 6⊆ d1 or
loose subset

• Quickly find largest loose subset for (D,≺)?
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Computing anti-chains

• Largest anti-chain can be found in O(n2.5) time

• Reduces to max matching in bipartite graph G [Hopcroft
and Karp, 1973]

• Implicit posets =⇒ edges of G are implicit
• Possible speedup?
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The framework

• Insight: algorithmic framework for implicit posets

• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n

• Goal: compute largest anti-chain for (V,≺)

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time

(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time

(iii) Construct D(P) in O(m · T(m)) time

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

6/12



The framework

• Insight: algorithmic framework for implicit posets
• (V,≺): poset of size n
• Goal: compute largest anti-chain for (V,≺)

For P ⊆ V , m = |P|, we have data structure D(P):

(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

6/12



The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001
• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12



The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001
• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12



The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001

• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12



The framework: remarks

Suppose for P ⊆ V , m = |P|, we have data structure D(P):
(i) Query v ∈ V , D(P) returns u ∈ P with v ≺ u in T(m) time
(ii) Delete an element from D(P) in T(m) time
(iii) Construct D(P) in O(m · T(m)) time

Our result
Can find largest anti-chain for (V,≺) in O

(
n1.5 · T(n)

)
time

• Idea: Simulate Hopcroft-Karp using D

• Based on framework of Efrat et al., 2001
• Recently: Similar framework for minimum cuts in disk
graphs [Cabello and Mulzer, 2020]

7/12



Applications



Largest Pareto-optimal subset

• P: point set

• p dominates q ⇐⇒ p ≥ q coordinate wise
• Q ⊆ P is Pareto-optimal if no point in Q dominates any
other point in Q
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Largest Pareto-optimal subset: the data structure

Largest Pareto-optimal subset ≡ anti-chain in (P,≺)

Query v ∈ P, D(P) returns u ∈ P with v ≺ u
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Largest loose subset of disks

• D: set of disks in R2

• (D,≺), d′ ≺ d ⇐⇒ d ⊆ d′

• S ⊆ D is loose if no disk in S contains another disk in S
• Loose subset ≡ anti-chain in (D,≺)

• Compare to Independent set which is NP-hard
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Conclusion

• Framework for computing anti-chains in implicit posets

• Similar frameworks using dynamic data structures [Efrat
et al., 2001, Cabello and Mulzer, 2020]

• Other results: Largest subset of non-crossing rectangles,
isolated points, ...

• More applications?

Thank you!
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