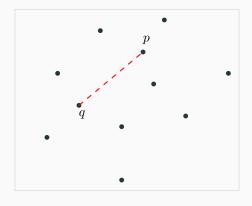
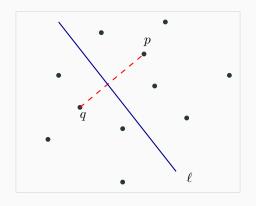
# On Separating Points by Lines

Sariel Har-Peled, Mitchell Jones

January 8, 2018


University of Illinois at Urbana-Champaign

Introduction & Motivation


# **Definition: Separation**



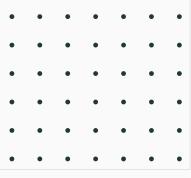
# **Definition: Separation**



# **Definition: Separation**

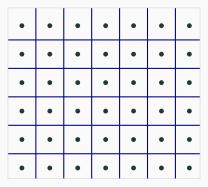


#### **Problem**


Let P be a set of points in  $\mathbb{R}^2$ . Find the minimum number of lines needed to separate all pairs of points in P, denoted by sep(P).

#### **Problem**

Let P be a set of points in  $\mathbb{R}^2$ . Find the minimum number of lines needed to separate all pairs of points in P, denoted by sep(P).


Known: NP-complete [Freimer-Mitchell-Piatko '91]

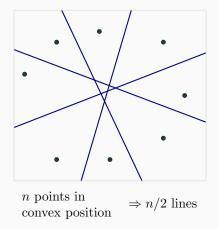
## **Example: Grid points**



$$\sqrt{n} \times \sqrt{n}$$
 grid

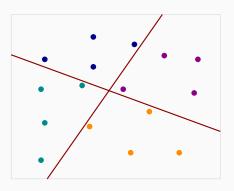
## **Example: Grid points**




$$\sqrt{n} \times \sqrt{n}$$
grid $\Rightarrow O(\sqrt{n})$  lines

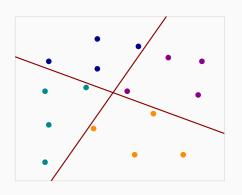
## **Example: Convex position**




n points in convex position

## **Example: Convex position**




## **Motivation**

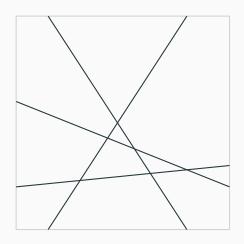
- · Ham Sandwich Theorem
- · Cutting problems
  [Chazelle-Friedman '90]
- Partition problems[Matoušek '92]
- Polynomial partition problems
   [Agarwal-Matoušek-Sharir '13]
   Strong properties, less algorithmically convenient



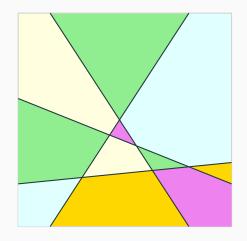
## **Motivation**

- · Ham Sandwich Theorem
- · Cutting problems
  [Chazelle-Friedman '90]
- Partition problems[Matoušek '92]
- Polynomial partition problems
   [Agarwal-Matoušek-Sharir '13]
   Strong properties, less algorithmically convenient
- What else can be can with lines/hyperplanes?

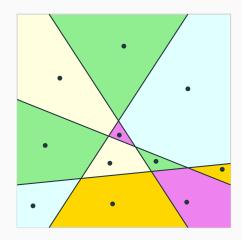



(1) 
$$sep(P) \leq \lceil n/2 \rceil$$
.

- (1)  $sep(P) \leq \lceil n/2 \rceil$ .
- (2)  $sep(P) = \Omega(\sqrt{n}).$

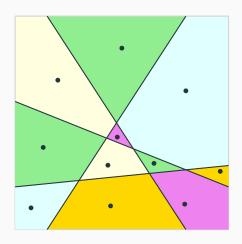

## Lemma

- (1)  $sep(P) \leq \lceil n/2 \rceil$ .
- (2)  $sep(P) = \Omega(\sqrt{n}).$


· *m* lines



- (1)  $sep(P) \leq \lceil n/2 \rceil$ .
- (2)  $sep(P) = \Omega(\sqrt{n}).$ 
  - · *m* lines
  - ·  $O(m^2)$  faces

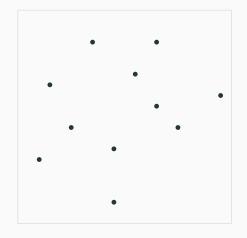



- (1)  $sep(P) \leq \lceil n/2 \rceil$ .
- (2)  $sep(P) = \Omega(\sqrt{n}).$ 
  - · *m* lines
  - ·  $O(m^2)$  faces
  - $\cdot n = O(m^2)$  points

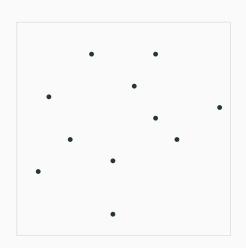


- (1)  $sep(P) \leq \lceil n/2 \rceil$ .
- (2)  $sep(P) = \Omega(\sqrt{n}).$ 
  - · *m* lines
  - ·  $O(m^2)$  faces
  - $\cdot n = O(m^2)$  points

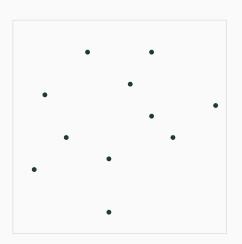
$$\implies m = \Omega(\sqrt{n})$$



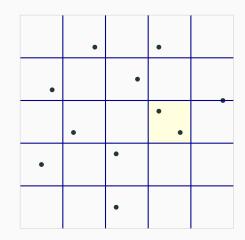

Separating random points


## Results

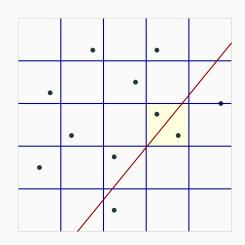
#### **Theorem**


Let P be a set of n points chosen UAR from  $[0,1]^2$ . With high probability,  $\operatorname{sep}(P) = \Omega(n^{2/3} \log \log n / \log n)$ .

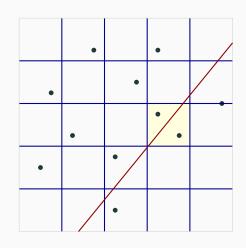



· Form a  $n^{2/3} \times n^{2/3}$  grid

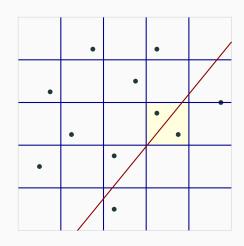



- · Form a  $n^{2/3} \times n^{2/3}$  grid
- · Area of grid cell =  $1/n^{4/3}$




- · Form a  $n^{2/3} \times n^{2/3}$  grid
- · Area of grid cell =  $1/n^{4/3}$
- · Separate points in different grid cells using  $O(n^{2/3})$  lines




- · Form a  $n^{2/3} \times n^{2/3}$  grid
- · Area of grid cell =  $1/n^{4/3}$
- · Separate points in different grid cells using  $O(n^{2/3})$  lines



- · Form a  $n^{2/3} \times n^{2/3}$  grid
- · Area of grid cell =  $1/n^{4/3}$
- · Separate points in different grid cells using  $O(n^{2/3})$  lines
- Expected number of colliding pairs is  $\binom{n}{2} \frac{1}{n^{4/3}} = O(n^{2/3})$



- · Form a  $n^{2/3} \times n^{2/3}$  grid
- · Area of grid cell =  $1/n^{4/3}$
- · Separate points in different grid cells using  $O(n^{2/3})$  lines
- Expected number of colliding pairs is  $\binom{n}{2} \frac{1}{n^{4/3}} = O(n^{2/3})$  $\implies O(n^{2/3})$  lines needed



- 1. How many heavy cells?
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many heavy cells?
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?  $\leq 2T$
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?  $\leq 2T$
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?  $\leq 2T$
- 3. Of these cells, how many **heavy** cells?  $O(\log n / \log \log n)$

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?  $\leq 2T$
- 3. Of these cells, how many **heavy** cells?  $O(\log n / \log \log n)$

## **Lower bound (sketch):** $\Omega(n^{2/3} \log \log n / \log n)$

Interpret it as a balls (points) and bins (cells) problem on  $T \times T$  grid,  $T = n^{2/3}$ .

- 1. How many **heavy** cells?  $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?  $\leq 2T$
- 3. Of these cells, how many **heavy** cells?  $O(\log n / \log \log n)$  $\Longrightarrow \Omega(n^{2/3} \log \log n / \log n)$  lines needed

10

## **Higher dimensions**

#### **Theorem**

Let P be a set of n points chosen UAR from  $[0,1]^d$ . With high probability, the minimum number of hyperplanes separating P is  $\Omega(n^{2/(d+1)} \log \log n / \log n)$ .

In expectation, one needs  $O(dn^{2/(d+1)})$  separating hyperplanes.

Approximating the minimum

separating set

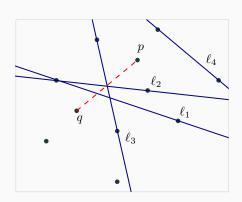
### A slightly weaker result

#### Lemma

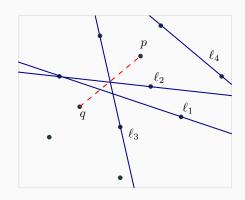
Let P be a set of points in  $\mathbb{R}^2$  and  $\mathsf{OPT} := \mathsf{sep}(P)$ .

There is an algorithm that finds set of separating set of lines of size  $O(\mathsf{OPT} \log \mathsf{OPT})$ , expected running time  $O(n^2 \mathsf{OPT} \log \mathsf{OPT})$ .

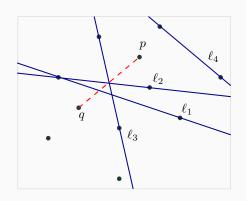
### A slightly weaker result


#### Lemma

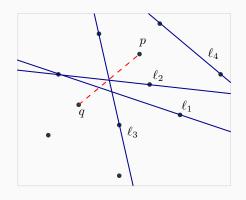
Let P be a set of points in  $\mathbb{R}^2$  and  $\mathsf{OPT} := \mathsf{sep}(P)$ .


There is an algorithm that finds set of separating set of lines of size  $O(\mathsf{OPT} \log \mathsf{OPT})$ , expected running time  $O(n^2 \mathsf{OPT} \log \mathsf{OPT})$ .

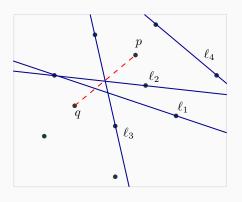
Known: 2-approximation when separating lines are axis-parallel [Calinescu-Dumitrescu-Karloff-Wan '05]

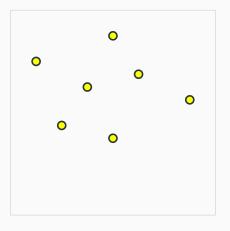

 Suffices to consider lines passing through pairs of points

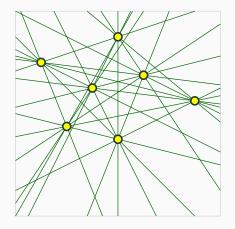


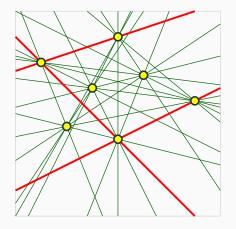

- Suffices to consider lines passing through pairs of points
- · Generate  $O(n^2)$  lines (C)

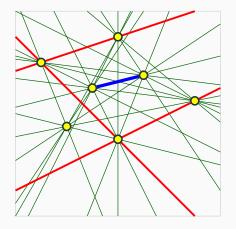


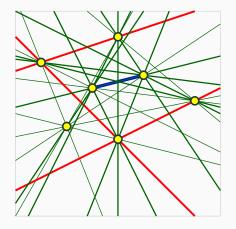

- Suffices to consider lines passing through pairs of points
- · Generate  $O(n^2)$  lines (C)
- · For each segment pq, determine all lines intersecting pq ( $L_{pq}$ )

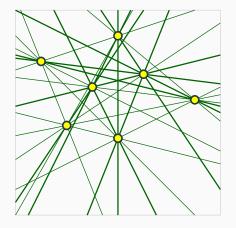




- Suffices to consider lines passing through pairs of points
- · Generate  $O(n^2)$  lines (C)
- · For each segment pq, determine all lines intersecting pq ( $L_{pq}$ )
- · Repeat for all segments,  $\mathcal{L} = \{L_{pq}\}_{p,q \in P}$

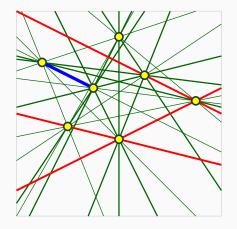


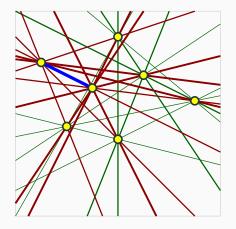


- Suffices to consider lines passing through pairs of points
- · Generate  $O(n^2)$  lines (C)
- · For each segment pq, determine all lines intersecting pq ( $L_{pq}$ )
- · Repeat for all segments,  $\mathcal{L} = \{L_{pq}\}_{p,q \in P}$   $\implies (\mathcal{C}, \mathcal{L})$  hitting set instance (finite VC dimension)

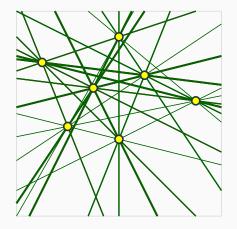


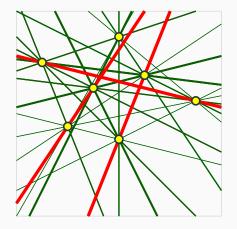





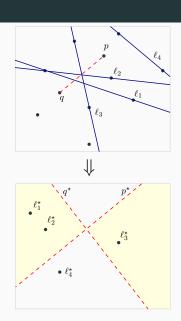





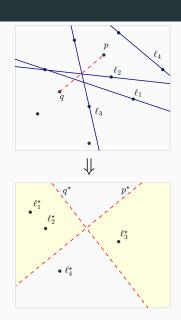




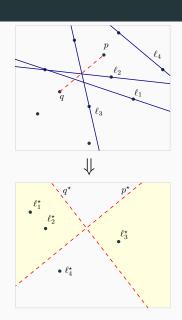



### **Analysis**


#### Lemma

Algorithm returns a set of separating lines of size  $O(OPT \log OPT)$ , expected running time  $O(n^2OPT \log OPT)$ .


· Bottleneck is maintaining weights of  $O(n^2)$  lines



- · Bottleneck is maintaining weights of  $O(n^2)$  lines
- · Use duality (lines  $\rightarrow$  points, segments  $\rightarrow$  wedges)



- · Bottleneck is maintaining weights of  $O(n^2)$  lines
- · Use duality (lines  $\rightarrow$  points, segments  $\rightarrow$  wedges)
- Maintain weights as they are updated



#### **Theorem**

Improved algorithm returns a set of separating lines of size  $O(\mathsf{OPT} \log \mathsf{OPT})$ , expected running time  $O(n^{2/3} \mathsf{OPT}^{5/3} \log^{O(1)} n)$ .

#### **Theorem**

Improved algorithm returns a set of separating lines of size  $O(\mathsf{OPT} \log \mathsf{OPT})$ , expected running time  $O(n^{2/3} \mathsf{OPT}^{5/3} \log^{O(1)} n)$ .

$$\cdot \operatorname{sep}(P) = O(\sqrt{n}) \implies O(n^{3/2} \log^{O(1)} n)$$

#### **Theorem**

Improved algorithm returns a set of separating lines of size  $O(\mathsf{OPT} \log \mathsf{OPT})$ , expected running time  $O(n^{2/3} \mathsf{OPT}^{5/3} \log^{O(1)} n)$ .

$$\cdot \operatorname{sep}(P) = O(\sqrt{n}) \implies O(n^{3/2} \log^{O(1)} n)$$

$$\cdot \operatorname{sep}(P) = O(n) \implies O(n^{7/3} \log^{O(1)} n)$$

### Summary

- · For *n* random points in  $[0,1]^2$ , expected  $O(n^{2/3})$  lines needed
- · With high probability,  $\Omega(n^{2/3} \log \log n / \log n)$  lines needed
- Can compute a separating set of size  $O(\mathsf{OPT} \log \mathsf{OPT})$  in time  $\widetilde{O}(n^{2/3}\mathsf{OPT}^{5/3})$

### **Summary**

- · For *n* random points in  $[0,1]^2$ , expected  $O(n^{2/3})$  lines needed
- · With high probability,  $\Omega(n^{2/3} \log \log n / \log n)$  lines needed
- Can compute a separating set of size  $O(\mathsf{OPT} \log \mathsf{OPT})$  in time  $\widetilde{O}(n^{2/3} \mathsf{OPT}^{5/3})$

Thank you!