
On Separating Points by Lines

Sariel Har-Peled, Mitchell Jones

January 8, 2018

University of Illinois at Urbana-Champaign

1



Introduction & Motivation



Definition: Separation

2



Definition: Separation

p

q

2



Definition: Separation

p

q

`

2



Problem

Let P be a set of points in R2. Find the minimum number of lines

needed to separate all pairs of points in P, denoted by sep(P).

Known: NP-complete [Freimer-Mitchell-Piatko ’91]

3



Problem

Let P be a set of points in R2. Find the minimum number of lines

needed to separate all pairs of points in P, denoted by sep(P).

Known: NP-complete [Freimer-Mitchell-Piatko ’91]

3



Example: Grid points

√
n×
√
n grid

4



Example: Grid points

√
n×
√
n grid ⇒ O(

√
n) lines

4



Example: Convex position

n points in
convex position

5



Example: Convex position

n points in
convex position

⇒ n/2 lines

5



Motivation

· Ham Sandwich Theorem

· Cutting problems

[Chazelle-Friedman ’90]

· Partition problems

[Matoušek ’92]

· Polynomial partition problems

[Agarwal-Matoušek-Sharir ’13]

Strong properties, less

algorithmically convenient

· What else can be can with

lines/hyperplanes?

6



Motivation

· Ham Sandwich Theorem

· Cutting problems

[Chazelle-Friedman ’90]

· Partition problems

[Matoušek ’92]

· Polynomial partition problems

[Agarwal-Matoušek-Sharir ’13]

Strong properties, less

algorithmically convenient

· What else can be can with

lines/hyperplanes?

6



Bounds

Lemma

(1) sep(P) ≤ dn/2e.

(2) sep(P) = Ω(
√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)

7



Bounds

Lemma

(1) sep(P) ≤ dn/2e.
(2) sep(P) = Ω(

√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)

7



Bounds

Lemma

(1) sep(P) ≤ dn/2e.
(2) sep(P) = Ω(

√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)

7



Bounds

Lemma

(1) sep(P) ≤ dn/2e.
(2) sep(P) = Ω(

√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)

7



Bounds

Lemma

(1) sep(P) ≤ dn/2e.
(2) sep(P) = Ω(

√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)

7



Bounds

Lemma

(1) sep(P) ≤ dn/2e.
(2) sep(P) = Ω(

√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)

7



Separating random points



Results

Theorem

Let P be a set of n points chosen UAR from [0, 1]2. With high

probability, sep(P) = Ω(n2/3 log log n/ log n).

8



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed

9



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells?

2. How many cells can a line intersect?

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells?

2. How many cells can a line intersect?

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect?

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect?

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect? ≤ 2T

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect? ≤ 2T

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect? ≤ 2T

3. Of these cells, how many heavy cells? O(log n/ log log n)

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect? ≤ 2T

3. Of these cells, how many heavy cells? O(log n/ log log n)

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells? Θ(n2/3)

2. How many cells can a line intersect? ≤ 2T

3. Of these cells, how many heavy cells? O(log n/ log log n)

=⇒ Ω(n2/3 log log n/ log n) lines needed

10



Higher dimensions

Theorem

Let P be a set of n points chosen UAR from [0, 1]d . With high

probability, the minimum number of hyperplanes separating P is

Ω(n2/(d+1) log log n/ log n).

In expectation, one needs O(dn2/(d+1)) separating hyperplanes.

11



Approximating the minimum

separating set



A slightly weaker result

Lemma

Let P be a set of points in R2 and OPT := sep(P).

There is an algorithm that finds set of separating set of lines of size

O(OPT log OPT), expected running time O(n2OPT log OPT).

Known: 2-approximation when separating lines are axis-parallel

[Calinescu-Dumitrescu-Karloff-Wan ’05]

12



A slightly weaker result

Lemma

Let P be a set of points in R2 and OPT := sep(P).

There is an algorithm that finds set of separating set of lines of size

O(OPT log OPT), expected running time O(n2OPT log OPT).

Known: 2-approximation when separating lines are axis-parallel

[Calinescu-Dumitrescu-Karloff-Wan ’05]

12



First algorithm with Hitting sets

· Suffices to consider lines

passing through pairs of points

· Generate O(n2) lines (C)

· For each segment pq, determine

all lines intersecting pq (Lpq)

· Repeat for all segments,

L = {Lpq}p,q∈P

=⇒ (C,L) hitting set instance

(finite VC dimension)

p

q `1

`2

`3

`4

13



First algorithm with Hitting sets

· Suffices to consider lines

passing through pairs of points

· Generate O(n2) lines (C)

· For each segment pq, determine

all lines intersecting pq (Lpq)

· Repeat for all segments,

L = {Lpq}p,q∈P

=⇒ (C,L) hitting set instance

(finite VC dimension)

p

q `1

`2

`3

`4

13



First algorithm with Hitting sets

· Suffices to consider lines

passing through pairs of points

· Generate O(n2) lines (C)

· For each segment pq, determine

all lines intersecting pq (Lpq)

· Repeat for all segments,

L = {Lpq}p,q∈P

=⇒ (C,L) hitting set instance

(finite VC dimension)

p

q `1

`2

`3

`4

13



First algorithm with Hitting sets

· Suffices to consider lines

passing through pairs of points

· Generate O(n2) lines (C)

· For each segment pq, determine

all lines intersecting pq (Lpq)

· Repeat for all segments,

L = {Lpq}p,q∈P

=⇒ (C,L) hitting set instance

(finite VC dimension)

p

q `1

`2

`3

`4

13



First algorithm with Hitting sets

· Suffices to consider lines

passing through pairs of points

· Generate O(n2) lines (C)

· For each segment pq, determine

all lines intersecting pq (Lpq)

· Repeat for all segments,

L = {Lpq}p,q∈P

=⇒ (C,L) hitting set instance

(finite VC dimension)

p

q `1

`2

`3

`4

13



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



Analysis

Lemma

Algorithm returns a set of separating lines of size O(OPT log OPT),

expected running time O(n2OPT log OPT).

15



Improvement

· Bottleneck is maintaining

weights of O(n2) lines

· Use duality (lines → points,

segments → wedges)

· Maintain weights as they are

updated

p

q `1

`2

`3

`4

⇓

`?1

`?2

`?3

`?4

p?q?

16



Improvement

· Bottleneck is maintaining

weights of O(n2) lines

· Use duality (lines → points,

segments → wedges)

· Maintain weights as they are

updated

p

q `1

`2

`3

`4

⇓

`?1

`?2

`?3

`?4

p?q?

16



Improvement

· Bottleneck is maintaining

weights of O(n2) lines

· Use duality (lines → points,

segments → wedges)

· Maintain weights as they are

updated

p

q `1

`2

`3

`4

⇓

`?1

`?2

`?3

`?4

p?q?

16



Improvement

Theorem

Improved algorithm returns a set of separating lines of size

O(OPT log OPT), expected running time O(n2/3OPT5/3 logO(1) n).

· sep(P) = O(
√
n) =⇒ O(n3/2 logO(1) n)

· sep(P) = O(n) =⇒ O(n7/3 logO(1) n)

17



Improvement

Theorem

Improved algorithm returns a set of separating lines of size

O(OPT log OPT), expected running time O(n2/3OPT5/3 logO(1) n).

· sep(P) = O(
√
n) =⇒ O(n3/2 logO(1) n)

· sep(P) = O(n) =⇒ O(n7/3 logO(1) n)

17



Improvement

Theorem

Improved algorithm returns a set of separating lines of size

O(OPT log OPT), expected running time O(n2/3OPT5/3 logO(1) n).

· sep(P) = O(
√
n) =⇒ O(n3/2 logO(1) n)

· sep(P) = O(n) =⇒ O(n7/3 logO(1) n)

17



Summary

· For n random points in [0, 1]2, expected O(n2/3) lines needed

· With high probability, Ω(n2/3 log log n/ log n) lines needed

· Can compute a separating set of size O(OPT log OPT) in time

Õ(n2/3OPT5/3)

Thank you!

18



Summary

· For n random points in [0, 1]2, expected O(n2/3) lines needed

· With high probability, Ω(n2/3 log log n/ log n) lines needed

· Can compute a separating set of size O(OPT log OPT) in time

Õ(n2/3OPT5/3)

Thank you!

18


	Introduction & Motivation
	Problem definition
	Examples
	Motivation
	Bounds

	Separating random points
	Results
	Upper bound
	Lower bound
	Higher dimensions

	Approximating the minimum separating set
	Sketch
	Improvement
	Summary


