On Separating Points by Lines

Sariel Har-Peled, Mitchell Jones

January 8, 2018

University of Illinois at Urbana-Champaign

Introduction & Motivation

Definition: Separation

Definition: Separation

Definition: Separation

Problem

Let P be a set of points in \mathbb{R}^2 . Find the minimum number of lines needed to separate all pairs of points in P, denoted by sep(P).

Problem

Let P be a set of points in \mathbb{R}^2 . Find the minimum number of lines needed to separate all pairs of points in P, denoted by sep(P).

Known: NP-complete [Freimer-Mitchell-Piatko '91]

Example: Grid points

$$\sqrt{n} \times \sqrt{n}$$
 grid

Example: Grid points

$$\sqrt{n} \times \sqrt{n}$$
grid $\Rightarrow O(\sqrt{n})$ lines

Example: Convex position

n points in convex position

Example: Convex position

Motivation

- · Ham Sandwich Theorem
- · Cutting problems
 [Chazelle-Friedman '90]
- Partition problems[Matoušek '92]
- Polynomial partition problems
 [Agarwal-Matoušek-Sharir '13]
 Strong properties, less algorithmically convenient

Motivation

- · Ham Sandwich Theorem
- · Cutting problems
 [Chazelle-Friedman '90]
- Partition problems[Matoušek '92]
- Polynomial partition problems
 [Agarwal-Matoušek-Sharir '13]
 Strong properties, less algorithmically convenient
- What else can be can with lines/hyperplanes?

(1)
$$sep(P) \leq \lceil n/2 \rceil$$
.

- (1) $sep(P) \leq \lceil n/2 \rceil$.
- (2) $sep(P) = \Omega(\sqrt{n}).$

Lemma

- (1) $sep(P) \leq \lceil n/2 \rceil$.
- (2) $sep(P) = \Omega(\sqrt{n}).$

· *m* lines

- (1) $sep(P) \leq \lceil n/2 \rceil$.
- (2) $sep(P) = \Omega(\sqrt{n}).$
 - · *m* lines
 - · $O(m^2)$ faces

- (1) $sep(P) \leq \lceil n/2 \rceil$.
- (2) $sep(P) = \Omega(\sqrt{n}).$
 - · *m* lines
 - · $O(m^2)$ faces
 - $\cdot n = O(m^2)$ points

- (1) $sep(P) \leq \lceil n/2 \rceil$.
- (2) $sep(P) = \Omega(\sqrt{n}).$
 - · *m* lines
 - · $O(m^2)$ faces
 - $\cdot n = O(m^2)$ points

$$\implies m = \Omega(\sqrt{n})$$

Separating random points

Results

Theorem

Let P be a set of n points chosen UAR from $[0,1]^2$. With high probability, $\operatorname{sep}(P) = \Omega(n^{2/3} \log \log n / \log n)$.

· Form a $n^{2/3} \times n^{2/3}$ grid

- · Form a $n^{2/3} \times n^{2/3}$ grid
- · Area of grid cell = $1/n^{4/3}$

- · Form a $n^{2/3} \times n^{2/3}$ grid
- · Area of grid cell = $1/n^{4/3}$
- · Separate points in different grid cells using $O(n^{2/3})$ lines

- · Form a $n^{2/3} \times n^{2/3}$ grid
- · Area of grid cell = $1/n^{4/3}$
- · Separate points in different grid cells using $O(n^{2/3})$ lines

- · Form a $n^{2/3} \times n^{2/3}$ grid
- · Area of grid cell = $1/n^{4/3}$
- · Separate points in different grid cells using $O(n^{2/3})$ lines
- Expected number of colliding pairs is $\binom{n}{2} \frac{1}{n^{4/3}} = O(n^{2/3})$

- · Form a $n^{2/3} \times n^{2/3}$ grid
- · Area of grid cell = $1/n^{4/3}$
- · Separate points in different grid cells using $O(n^{2/3})$ lines
- Expected number of colliding pairs is $\binom{n}{2} \frac{1}{n^{4/3}} = O(n^{2/3})$ $\implies O(n^{2/3})$ lines needed

- 1. How many heavy cells?
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many heavy cells?
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect?
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect? $\leq 2T$
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect? $\leq 2T$
- 3. Of these cells, how many heavy cells?

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect? $\leq 2T$
- 3. Of these cells, how many **heavy** cells? $O(\log n / \log \log n)$

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect? $\leq 2T$
- 3. Of these cells, how many **heavy** cells? $O(\log n / \log \log n)$

Lower bound (sketch): $\Omega(n^{2/3} \log \log n / \log n)$

Interpret it as a balls (points) and bins (cells) problem on $T \times T$ grid, $T = n^{2/3}$.

- 1. How many **heavy** cells? $\Theta(n^{2/3})$
- 2. How many cells can a line intersect? $\leq 2T$
- 3. Of these cells, how many **heavy** cells? $O(\log n / \log \log n)$ $\Longrightarrow \Omega(n^{2/3} \log \log n / \log n)$ lines needed

10

Higher dimensions

Theorem

Let P be a set of n points chosen UAR from $[0,1]^d$. With high probability, the minimum number of hyperplanes separating P is $\Omega(n^{2/(d+1)} \log \log n / \log n)$.

In expectation, one needs $O(dn^{2/(d+1)})$ separating hyperplanes.

Approximating the minimum

separating set

A slightly weaker result

Lemma

Let P be a set of points in \mathbb{R}^2 and $\mathsf{OPT} := \mathsf{sep}(P)$.

There is an algorithm that finds set of separating set of lines of size $O(\mathsf{OPT} \log \mathsf{OPT})$, expected running time $O(n^2 \mathsf{OPT} \log \mathsf{OPT})$.

A slightly weaker result

Lemma

Let P be a set of points in \mathbb{R}^2 and $\mathsf{OPT} := \mathsf{sep}(P)$.

There is an algorithm that finds set of separating set of lines of size $O(\mathsf{OPT} \log \mathsf{OPT})$, expected running time $O(n^2 \mathsf{OPT} \log \mathsf{OPT})$.

Known: 2-approximation when separating lines are axis-parallel [Calinescu-Dumitrescu-Karloff-Wan '05]

 Suffices to consider lines passing through pairs of points

- Suffices to consider lines passing through pairs of points
- · Generate $O(n^2)$ lines (C)

- Suffices to consider lines passing through pairs of points
- · Generate $O(n^2)$ lines (C)
- · For each segment pq, determine all lines intersecting pq (L_{pq})

- Suffices to consider lines passing through pairs of points
- · Generate $O(n^2)$ lines (C)
- · For each segment pq, determine all lines intersecting pq (L_{pq})
- · Repeat for all segments, $\mathcal{L} = \{L_{pq}\}_{p,q \in P}$

- Suffices to consider lines passing through pairs of points
- · Generate $O(n^2)$ lines (C)
- · For each segment pq, determine all lines intersecting pq (L_{pq})
- · Repeat for all segments, $\mathcal{L} = \{L_{pq}\}_{p,q \in P}$ $\implies (\mathcal{C}, \mathcal{L})$ hitting set instance (finite VC dimension)

Analysis

Lemma

Algorithm returns a set of separating lines of size $O(OPT \log OPT)$, expected running time $O(n^2OPT \log OPT)$.

· Bottleneck is maintaining weights of $O(n^2)$ lines

- · Bottleneck is maintaining weights of $O(n^2)$ lines
- · Use duality (lines \rightarrow points, segments \rightarrow wedges)

- · Bottleneck is maintaining weights of $O(n^2)$ lines
- · Use duality (lines \rightarrow points, segments \rightarrow wedges)
- Maintain weights as they are updated

Theorem

Improved algorithm returns a set of separating lines of size $O(\mathsf{OPT} \log \mathsf{OPT})$, expected running time $O(n^{2/3} \mathsf{OPT}^{5/3} \log^{O(1)} n)$.

Theorem

Improved algorithm returns a set of separating lines of size $O(\mathsf{OPT} \log \mathsf{OPT})$, expected running time $O(n^{2/3} \mathsf{OPT}^{5/3} \log^{O(1)} n)$.

$$\cdot \operatorname{sep}(P) = O(\sqrt{n}) \implies O(n^{3/2} \log^{O(1)} n)$$

Theorem

Improved algorithm returns a set of separating lines of size $O(\mathsf{OPT} \log \mathsf{OPT})$, expected running time $O(n^{2/3} \mathsf{OPT}^{5/3} \log^{O(1)} n)$.

$$\cdot \operatorname{sep}(P) = O(\sqrt{n}) \implies O(n^{3/2} \log^{O(1)} n)$$

$$\cdot \operatorname{sep}(P) = O(n) \implies O(n^{7/3} \log^{O(1)} n)$$

Summary

- · For *n* random points in $[0,1]^2$, expected $O(n^{2/3})$ lines needed
- · With high probability, $\Omega(n^{2/3} \log \log n / \log n)$ lines needed
- Can compute a separating set of size $O(\mathsf{OPT} \log \mathsf{OPT})$ in time $\widetilde{O}(n^{2/3}\mathsf{OPT}^{5/3})$

Summary

- · For *n* random points in $[0,1]^2$, expected $O(n^{2/3})$ lines needed
- · With high probability, $\Omega(n^{2/3} \log \log n / \log n)$ lines needed
- Can compute a separating set of size $O(\mathsf{OPT} \log \mathsf{OPT})$ in time $\widetilde{O}(n^{2/3} \mathsf{OPT}^{5/3})$

Thank you!