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Problem

Let P be a set of points in R2. Find the minimum number of lines
needed to separate all pairs of points in P, denoted by sep(F).
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Known: NP-complete [Freimer-Mitchell-Piatko '91]
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- Ham Sandwich Theorem

- Cutting problems
[Chazelle-Friedman '90]

- Partition problems
[Matousek '92]

- Polynomial partition problems
[Agarwal-Matousek-Sharir '13]

Strong properties, less
algorithmically convenient

- What else can be can with

lines/hyperplanes?
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- O(m?) faces
- n = 0O(m?) points
— m—(/R)




Separating random points




Theorem

Let P be a set of n points chosen UAR from [0, 1]°. With high
probability, sep(P) = Q(n?/3loglog n/ log n).
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- Form a n?/3 x n?/3 grid O O /
4/3

- Area of grid cell =1/n

- Separate points in different grid .
cells using O(n%/3) lines .

- Expected number of colliding o /
pairs is (3) =5 = O(n*/3) .
—> 0(n?/3) lines needed




Lower bound (sketch): Q(n%*?3loglog n/log n)

Interpret it as a balls (points) and bins (cells) problem on T x T grid,
T = n?/3.

1. How many heavy cells?
2. How many cells can a line intersect?

3. Of these cells, how many heavy cells?
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Interpret it as a balls (points) and bins (cells) problem on T x T grid,
T = n?/3.

1. How many heavy cells? ©(n?/3)
2. How many cells can a line intersect? < 2T

3. Of these cells, how many heavy cells?
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Lower bound (sketch): Q(n%*?3loglog n/log n)

Interpret it as a balls (points) and bins (cells) problem on T x T grid,
T = n?/3.

1. How many heavy cells? ©(n?/3)
2. How many cells can a line intersect? < 27

3. Of these cells, how many heavy cells? O(log n/loglog n)
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Lower bound (sketch): Q(n%*?3loglog n/log n)

Interpret it as a balls (points) and bins (cells) problem on T x T grid,
T = n?/3.

1. How many heavy cells? ©(n?/3)
2. How many cells can a line intersect? < 27
3. Of these cells, how many heavy cells? O(log n/loglog n)

= Q(n*/3loglog n/ log n) lines needed
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Higher dimensions

Theorem

Let P be a set of n points chosen UAR from [0, 1]. With high
probability, the minimum number of hyperplanes separating P is
Q(n?/{9+1) log log n/ log n).

In expectation, one needs O(dn”/(?*1)) separating hyperplanes.
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Approximating the minimum
separating set




A slightly weaker result

Lemma

Let P be a set of points in R? and OPT := sep(P).

There is an algorithm that finds set of separating set of lines of size
O(OPT log OPT), expected running time O(n*OPT log OPT).
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A slightly weaker result

Lemma

Let P be a set of points in R? and OPT := sep(P).

There is an algorithm that finds set of separating set of lines of size
O(OPT log OPT), expected running time O(n*OPT log OPT).

Known: 2-approximation when separating lines are axis-parallel
[Calinescu-Dumitrescu-Karloff-Wan '05]
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First algorithm with Hitting sets

- Suffices to consider lines
passing through pairs of points
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First algorithm with Hitting sets

- Suffices to consider lines
passing through pairs of points

- Generate O(n?) lines (C)

- For each segment pqg, determine
all lines intersecting pq (Lpq)

- Repeat for all segments,
L= {qu}pﬂqu
= (C, L) hitting set instance
(finite VC dimension)

13



First algorithm

14



First algorithm

14



First algorithm

14



First algorithm

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



=
=
=}
‘=
o
20
(0]
-
()]
o
(18

14



Lemma

Algorithm returns a set of separating lines of size O(OPT log OPT),
expected running time O(n*OPT log OPT).
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Improvement

Bottleneck is maintaining
weights of O(n?) lines
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Improvement

- Bottleneck is maintaining
weights of O(n?) lines

- Use duality (lines — points, U
segments — wedges) — —
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Improvement

Theorem

Improved algorithm returns a set of separating lines of size
O(OPT log OPT), expected running time O(n?/30PT°/310g®W p).
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Improvement

Theorem

Improved algorithm returns a set of separating lines of size
O(OPT log OPT), expected running time O(n?/30PT°/310g®W p).

. sep(P) = O(v/n) = O(n*?10g®® )

17



Improvement

Theorem

Improved algorithm returns a set of separating lines of size
O(OPT log OPT), expected running time O(n?/30PT°/310g®W p).

. sep(P) = O(y/n) = O(n*/210g°® n)
- sep(P) = O(n) = O(n"/*1og®™ n)
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- For n random points in [0, 1], expected O(n?/3) lines needed
- With high probability, Q(n?/3log log n/ log n) lines needed

- Can compute a separating set of size O(OPT log OPT) in time
O(n?/30PT*/3)
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- For n random points in [0, 1], expected O(n?/3) lines needed
- With high probability, Q(n?/3log log n/ log n) lines needed

- Can compute a separating set of size O(OPT log OPT) in time
O(n?/30PT*/3)

Thank you!
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