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Problem

Let P be a set of points in R2. Find the minimum number of lines

needed to separate all pairs of points in P, denoted by sep(P).

Known: NP-complete [Freimer-Mitchell-Piatko ’91]
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Example: Grid points
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Example: Grid points

√
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√
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√
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Example: Convex position

n points in
convex position
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Example: Convex position

n points in
convex position

⇒ n/2 lines
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Motivation

· Ham Sandwich Theorem

· Cutting problems

[Chazelle-Friedman ’90]

· Partition problems

[Matoušek ’92]

· Polynomial partition problems

[Agarwal-Matoušek-Sharir ’13]

Strong properties, less

algorithmically convenient

· What else can be can with

lines/hyperplanes?
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Bounds

Lemma

(1) sep(P) ≤ dn/2e.

(2) sep(P) = Ω(
√
n).

· m lines

· O(m2) faces

· n = O(m2) points

=⇒ m = Ω(
√
n)
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Separating random points



Results

Theorem

Let P be a set of n points chosen UAR from [0, 1]2. With high

probability, sep(P) = Ω(n2/3 log log n/ log n).
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Expected number of lines: O(n2/3)

· Form a n2/3 × n2/3 grid

· Area of grid cell = 1/n4/3

· Separate points in different grid

cells using O(n2/3) lines

· Expected number of colliding

pairs is
(
n
2

)
1

n4/3
= O(n2/3)

=⇒ O(n2/3) lines needed
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Lower bound (sketch): Ω(n2/3 log log n/ log n)

Interpret it as a balls (points) and bins (cells) problem on T × T grid,

T = n2/3.

1. How many heavy cells?

2. How many cells can a line intersect?

3. Of these cells, how many heavy cells?

=⇒ Ω(n2/3 log log n/ log n) lines needed
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Higher dimensions

Theorem

Let P be a set of n points chosen UAR from [0, 1]d . With high

probability, the minimum number of hyperplanes separating P is

Ω(n2/(d+1) log log n/ log n).

In expectation, one needs O(dn2/(d+1)) separating hyperplanes.
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Approximating the minimum

separating set



A slightly weaker result

Lemma

Let P be a set of points in R2 and OPT := sep(P).

There is an algorithm that finds set of separating set of lines of size

O(OPT log OPT), expected running time O(n2OPT log OPT).

Known: 2-approximation when separating lines are axis-parallel

[Calinescu-Dumitrescu-Karloff-Wan ’05]
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First algorithm with Hitting sets

· Suffices to consider lines

passing through pairs of points

· Generate O(n2) lines (C)

· For each segment pq, determine

all lines intersecting pq (Lpq)

· Repeat for all segments,

L = {Lpq}p,q∈P

=⇒ (C,L) hitting set instance

(finite VC dimension)

p

q `1

`2

`3

`4
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Analysis

Lemma

Algorithm returns a set of separating lines of size O(OPT log OPT),

expected running time O(n2OPT log OPT).
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Improvement

· Bottleneck is maintaining

weights of O(n2) lines

· Use duality (lines → points,

segments → wedges)

· Maintain weights as they are

updated

p

q `1

`2

`3

`4

⇓

`?1

`?2

`?3

`?4

p?q?
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Improvement

Theorem

Improved algorithm returns a set of separating lines of size

O(OPT log OPT), expected running time O(n2/3OPT5/3 logO(1) n).

· sep(P) = O(
√
n) =⇒ O(n3/2 logO(1) n)

· sep(P) = O(n) =⇒ O(n7/3 logO(1) n)
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Summary

· For n random points in [0, 1]2, expected O(n2/3) lines needed

· With high probability, Ω(n2/3 log log n/ log n) lines needed

· Can compute a separating set of size O(OPT log OPT) in time

Õ(n2/3OPT5/3)

Thank you!
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