Journey to the Center of the Point Set

Sariel Har-Peled and Mitchell Jones
SoCG '19, June 18, 2019
University of Illinois at Urbana-Champaign

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.
Applications:

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.
Applications:

- One point summary of P

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.
Applications:

- One point summary of P
- Divide and conquer

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.
Applications:

- One point summary of P
- Divide and conquer
- Helly's Theorem \Longrightarrow existence

Centerpoints

Definition: Centerpoints

$P \subset \mathbb{R}^{d}$: set of n points.
$c \in \mathbb{R}^{d}$ centerpoint for P if for every closed halfspace h^{+}:
$c \in h^{+} \Longrightarrow\left|P \cap h^{+}\right| \geqslant n /(d+1)$.
Applications:

- One point summary of P
- Divide and conquer
- Helly's Theorem \Longrightarrow existence
- α-centerpoints for $\alpha \in(0,1 /(d+1)]$

Previous work: computing centerpoints

- Brute force $\Theta\left(n^{d}\right)$ time

Previous work: computing centerpoints

- Brute force $\Theta\left(n^{d}\right)$ time
- $O\left(n^{d-1}+n \log n\right)$ expected time [Chan, 2004]

Previous work: computing centerpoints

- Brute force $\Theta\left(n^{d}\right)$ time
- $O\left(n^{d-1}+n \log n\right)$ expected time [Chan, 2004]
- $\approx 3 / 4(d+2)^{2}$-centerpoint, randomized time $O\left(\left(d^{5} \log d\right)^{\log _{2} d}\right)$ [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]

Previous work: computing centerpoints

- Brute force $\Theta\left(n^{d}\right)$ time
- $O\left(n^{d-1}+n \log n\right)$ expected time [Chan, 2004]
- $\approx 3 / 4(d+2)^{2}$-centerpoint, randomized time $O\left(\left(d^{5} \log d\right)^{\log _{2} d}\right)$ [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]
- Can be derandomized [Miller and Sheehy, 2010]

Previous work: computing centerpoints

- Brute force $\Theta\left(n^{d}\right)$ time
- $O\left(n^{d-1}+n \log n\right)$ expected time [Chan, 2004]
- $\approx 3 / 4(d+2)^{2}$-centerpoint, randomized time $O\left(\left(d^{5} \log d\right)^{\log _{2} d}\right)$ [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]
- Can be derandomized [Miller and Sheehy, 2010]
- Open: $\approx 1 /(d+1)$-centerpoint in $O($ poly $(d))$ time?

A polynomial algorithm

Theorem [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996] $P \subset \mathbb{R}^{d}$: set of n points.

With random sampling, $1 /\left(4(d+2)^{2}\right)$-centerpoint in time $O\left(d^{9} \log d\right)$.

A polynomial algorithm

Theorem [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996] $P \subset \mathbb{R}^{d}$: set of n points.

With random sampling, $1 /\left(4(d+2)^{2}\right)$-centerpoint in time $O\left(d^{9} \log d\right)$.

Our result

With random sampling, $\approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

The idea

Our result

With random sampling, $a \approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

Our result

With random sampling, $a \approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

- Approximate centerpoint for $d+O(1)$ points in \mathbb{R}^{d} ?

Our result

With random sampling, $a \approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

- Approximate centerpoint for $d+O(1)$ points in \mathbb{R}^{d} ?
- Yes! Radon's Theorem.

A detour: Radon's Theorem

Radon's Theorem

$P \subset \mathbb{R}^{d}$: set of $d+2$ points.
\exists partition $P=Q \sqcup R$ s.t.
$\operatorname{conv}(Q) \cap \operatorname{conv}(R) \neq \varnothing$.

A detour: Radon's Theorem

Radon's Theorem

$P \subset \mathbb{R}^{d}$: set of $d+2$ points.
\exists partition $P=Q \sqcup R$ s.t.
$\operatorname{conv}(Q) \cap \operatorname{conv}(R) \neq \varnothing$.

- Radon point: compute in $O\left(d^{3}\right)$ time.

A detour: Radon's Theorem

Radon's Theorem

$P \subset \mathbb{R}^{d}$: set of $d+2$ points.
\exists partition $P=Q \sqcup R$ s.t.
$\operatorname{conv}(Q) \cap \operatorname{conv}(R) \neq \varnothing$.

- Radon point: compute in $O\left(d^{3}\right)$ time.
- Radon point: $2 /(d+2)$-centerpoint for P.

Our contribution

A simplified variant of [Clarkson, Eppstein, et al., 1996].

1. $Q \subseteq P$ sample of size $\approx O\left(d^{3} \log d\right)$ [Li, Long, et al., 2001]
2. For $i=1, \ldots, O(d|Q|)$:
2.1 Sample $d+2$ points of Q
2.2 Compute their radon point r
2.3 Add r to Q
2.4 Delete a random point from Q (which isn't r)

$$
00
$$

Visualization

Visualization

Visualization

Visualization

Visualization

n: 5000

Visualization

n: 6000
n: 7000

$$
\text { n: } 8000
$$

Visualization

n: 10000

Visualization

Visualization

$\mathrm{n}: 14000$

Visualization

$$
\mathrm{n}: 16000
$$

Visualization

n: 18000

Visualization

Visualization

n: 22000

Visualization

n: 24000

Visualization

$$
\text { n: } 26000
$$

Visualization

n: 28000

Why does this work?

q is an α-centerpoint for P
all halfspaces h^{+}with $\left|P \cap h^{+}\right|>(1-\alpha)|P|$ contain q

Why does this work?

Why does this work?

Why does this work?

Why does this work?

q is an α-centerpoint for P

> all halfspaces h^{+}with
> $\left|P \cap h^{+}\right|>(1-\alpha)|P|$ contain q

Why does this work?

q is an α-centerpoint for P
all halfspaces h^{+}with $\left|P \cap h^{+}\right|>(1-\alpha)|P|$ contain q

Why does this work?

Why does this work?

Why does this work?

q is an α-centerpoint for P
all halfspaces h^{+}with
$\left|P \cap h^{+}\right|>(1-\alpha)|P|$ contain q

- Urn with b blue balls, $r=m-b$ red balls.

- Urn with b blue balls, $r=m-b$ red balls.
- In each round:

- Urn with b blue balls, $r=m-b$ red balls.
- In each round:

1. Mark a ball for deletion.

- Urn with b blue balls, $r=m-b$ red balls.
- In each round:

1. Mark a ball for deletion.
2. Sample $d+2$ balls.

- Urn with b blue balls, $r=m-b$ red balls.
- In each round:

1. Mark a ball for deletion.
2. Sample $d+2$ balls.
3. If $\geqslant 2$ balls in sample are red, add a red ball. Otherwise, add a blue ball.

- Urn with b blue balls, $r=m-b$ red balls.
- In each round:

1. Mark a ball for deletion.
2. Sample $d+2$ balls.
3. If $\geqslant 2$ balls in sample are red, add a red ball. Otherwise, add a blue ball.
4. Remove marked ball from urn.

Random walk process

Random walk process

$$
\begin{aligned}
& \left|\begin{array}{lll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right| \longrightarrow\left|\begin{array}{ccc}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right| \longrightarrow\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right| \longrightarrow\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
& & 0
\end{array}\right| \\
& \left|\begin{array}{ll}
0
\end{array}\right|
\end{aligned}
$$

Random walk process

$$
\begin{aligned}
& \left|\begin{array}{lll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right| \longrightarrow\left|\begin{array}{ccc}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right| \longrightarrow\left|\begin{array}{ccc}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right| \longrightarrow\left|\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right|
\end{aligned}
$$

Problem

Number of rounds until all balls are blue?

Problem

Number of rounds until all balls are blue?

Our result

When \# of balls m is sufficiently large: $O\left(m \log ^{2} m\right)$ rounds.

Problem

Number of rounds until all balls are blue?

Our result

When \# of balls m is sufficiently large: $O\left(m \log ^{2} m\right)$ rounds.

- Simulate random walk process in parallel for all $O\left(n^{d}\right)$ halfspaces.

Result

Our result

$P \subset \mathbb{R}^{d}$: set of n points.
With random sampling, $\approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

Result

Our result

$P \subset \mathbb{R}^{d}$: set of n points.
With random sampling, $\approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

- Radon points: quick to compute, good centerpoints

Result

Our result

$P \subset \mathbb{R}^{d}$: set of n points.
With random sampling, $\approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

- Radon points: quick to compute, good centerpoints
- Algorithm is many parallel random walks

Result

Our result

$P \subset \mathbb{R}^{d}$: set of n points.
With random sampling, $\approx 1 /(d+2)^{2}$-centerpoint in time $O\left(d^{7} \log d\right)$.

- Radon points: quick to compute, good centerpoints
- Algorithm is many parallel random walks

Problem

$\approx 1 / d$-centerpoints in $O(\operatorname{poly}(d))$ time?

Application: Center nets

Definition: center nets

$P \subset \mathbb{R}^{d}$: set of n points.
$Q \subset \mathbb{R}^{d},(\varepsilon, \alpha)$-center net if \forall convex bodies $C \subseteq \mathbb{R}^{d}$:
$|P \cap C| \geqslant \varepsilon n \Longrightarrow \exists q \in Q \cap C, q$ an α-centerpoint of $P \cap C$.
Our result
There exists an $\left(\varepsilon, \Omega\left(\frac{1}{d \log \varepsilon^{-1}}\right)\right)$-center net for P of size $\widetilde{o}\left(\left(d^{2} / \varepsilon\right)^{d^{2}}\right)$.

Application: Functional nets

Application: Functional nets

Our result

Can verify if $|C \cap P| \leqslant \varepsilon n$ with $O\left(d^{2} \log \varepsilon^{-1}\right)$ oracle queries to C, in $\widetilde{O}\left(d^{9} / \varepsilon\right)$ randomized time.

Application: Functional nets

Our result

Can verify if $|C \cap P| \leqslant \varepsilon n$ with $O\left(d^{2} \log \varepsilon^{-1}\right)$ oracle queries to C, in $\widetilde{O}\left(d^{9} / \varepsilon\right)$ randomized time.

- Weak ε-nets in a different model

Application: Functional nets

Our result

Can verify if $|C \cap P| \leqslant \varepsilon n$ with $O\left(d^{2} \log \varepsilon^{-1}\right)$ oracle queries to C, in $\widetilde{O}\left(d^{9} / \varepsilon\right)$ randomized time.

- Weak ε-nets in a different model
- Weak ε-nets have exponential dependency on d [Matoušek and Wagner, 2004] [Mustafa and Ray, 2008]

Application: Functional nets

Our result

Can verify if $|C \cap P| \leqslant \varepsilon n$ with $O\left(d^{2} \log \varepsilon^{-1}\right)$ oracle queries to C, in $\widetilde{O}\left(d^{9} / \varepsilon\right)$ randomized time.

- Weak ε-nets in a different model
- Weak ε-nets have exponential dependency on d [Matoušek and Wagner, 2004] [Mustafa and Ray, 2008]
- What models can we obtain similar results with better dependency on d ?

References i

T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. 430-436, 2004.
堛 K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center points with iterative Radon points. Internat. J. Comput. Geom. Appl., 6: 357-377, 1996.
E. G. L. Miller and D. R. Sheehy. Approximate centerpoints with proofs. Comput. Geom., 43(8): 647-654, 2010.
(T. Y. Li, P. M. Long, and A. Srinivasan. Improved bounds on the sample complexity of learning. J. Comput. Syst. Sci., 62(3): 516-527, 2001.
(1. J. Matoušek and U. Wagner. New constructions of weak epsilon-nets. Discrete Comput. Geom., 32(2): 195-206, 2004.

References ii

N. H. Mustafa and S. Ray. Weak ε-nets have basis of size $O\left(\varepsilon^{-1} \log \varepsilon^{-1}\right)$ in any dimension. Comput. Geom. Theory Appl., 40(1): 84-91, 2008.
V Vapnik and A Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. 1971.

