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Definition: Centerpoints
P ⊂ Rd: set of n points.

c ∈ Rd centerpoint for P if for every closed halfspace h+:
c ∈ h+ =⇒ |P ∩ h+| > n/(d+ 1).
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Previous work: computing centerpoints
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 Presentation

I Brute force Θ(nd) time

I O(nd−1 + n log n) expected time [Chan, 2004]

I ≈ 3/4(d+ 2)2-centerpoint, randomized time
O
(
(d5 log d)log2 d

)
[Clarkson, Eppstein, Miller, Sturtivant,

and Teng, 1996]

I Can be derandomized [Miller and Sheehy, 2010]

I Open: ≈ 1/(d+ 1)-centerpoint in O(poly(d)) time?
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A polynomial algorithm
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Theorem [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]

P ⊂ Rd: set of n points.

With random sampling, 1/(4(d+ 2)2)-centerpoint in time
O(d9 log d).

Our result
With random sampling, ≈ 1/(d+ 2)2-centerpoint in time
O(d7 log d).
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Our result
With random sampling, a ≈ 1/(d+ 2)2-centerpoint in time
O(d7 log d).

I Approximate centerpoint for d+ O(1) points in Rd?

I Yes! Radon’s Theorem.
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A detour: Radon’s Theorem
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 Presentation

Radon’s Theorem
P ⊂ Rd: set of d+ 2 points.

∃ partition P = Q t R s.t.
conv(Q) ∩ conv(R) 6= ∅.

I Radon point: compute in O(d3) time.

I Radon point: 2/(d+ 2)-centerpoint for P.
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Our contribution
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A simplified variant of [Clarkson, Eppstein, et al., 1996].

1. Q ⊆ P sample of size ≈ O(d3 log d) [Li, Long, et al., 2001]

2. For i = 1, . . . ,O(d|Q|):
2.1 Sample d+ 2 points of Q

2.2 Compute their radon point r

2.3 Add r to Q

2.4 Delete a random point from Q (which isn’t r)
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Why does this work?
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q is an α-centerpoint for P ⇐⇒ all halfspaces h+ with
|P ∩ h+| > (1− α)|P| contain q
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Radon’s urn
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 Presentation

I Urn with b blue balls, r = m− b red balls.

I In each round:

1. Mark a ball for deletion.

2. Sample d+ 2 balls.

3. If > 2 balls in sample are red, add a red ball. Otherwise,
add a blue ball.

4. Remove marked ball from urn.
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# of red balls
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Radon’s urn
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Problem
Number of rounds until all balls
are blue?

Our result
When # of balls m is sufficiently
large: O(m log2m) rounds.

I Simulate random walk
process in parallel for all
O(nd) halfspaces.
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Result
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Our result
P ⊂ Rd: set of n points.

With random sampling, ≈ 1/(d+ 2)2-centerpoint in time
O(d7 log d).

I Radon points: quick to compute, good centerpoints

I Algorithm is many parallel random walks

Problem
≈ 1/d-centerpoints in O(poly(d)) time?
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Application: Center nets
Student

 Presentation

Definition: center nets
P ⊂ Rd: set of n points.

Q ⊂ Rd, (ε,α)-center net if ∀ convex bodies C ⊆ Rd:

|P ∩ C| > εn =⇒ ∃q ∈ Q ∩ C, q an α-centerpoint of P ∩ C.

Our result

There exists an
(
ε,Ω

(
1

d logε−1

))
-center net for P of size

Õ
(
(d2/ε)d2

)
.
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Application: Functional nets
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Our result
Can verify if |C ∩ P| 6 εn with O(d2 log ε−1) oracle queries to C,
in Õ(d9/ε) randomized time.

I Weak ε-nets in a different model

I Weak ε-nets have exponential dependency on d
[Matoušek and Wagner, 2004] [Mustafa and Ray, 2008]

I What models can we obtain similar results with better
dependency on d?
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