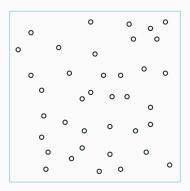
Journey to the Center of the Point Set

Sariel Har-Peled and <u>Mitchell Jones</u> SoCG '19, June 18, 2019

University of Illinois at Urbana-Champaign

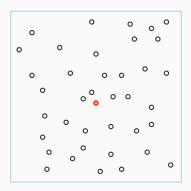
 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for *P* if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$



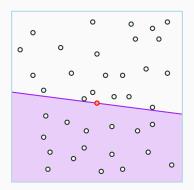
 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for *P* if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$



 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for *P* if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$



 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for P if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$

 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for P if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$

Applications:

One point summary of P

 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for *P* if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$

- One point summary of P
- Divide and conquer

 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for P if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$

- One point summary of P
- Divide and conquer
- Helly's Theorem \implies existence

 $P \subset \mathbb{R}^d$: set of *n* points.

 $c \in \mathbb{R}^d$ centerpoint for P if for every closed halfspace h^+ : $c \in h^+ \implies |P \cap h^+| \ge n/(d+1).$

- One point summary of P
- Divide and conquer
- Helly's Theorem \implies existence
- α -centerpoints for $\alpha \in (0, 1/(d+1)]$

• Brute force $\Theta(n^d)$ time

- Brute force $\Theta(n^d)$ time
- $O(n^{d-1} + n \log n)$ expected time [Chan, 2004]

- Brute force $\Theta(n^d)$ time
- $O(n^{d-1} + n \log n)$ expected time [Chan, 2004]
- ≈ 3/4(d + 2)²-centerpoint, randomized time
 O((d⁵ log d)^{log₂ d}) [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]

- Brute force $\Theta(n^d)$ time
- $O(n^{d-1} + n \log n)$ expected time [Chan, 2004]
- ≈ 3/4(d + 2)²-centerpoint, randomized time
 O((d⁵ log d)^{log₂ d}) [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]
- ► Can be derandomized [Miller and Sheehy, 2010]

- Brute force $\Theta(n^d)$ time
- $O(n^{d-1} + n \log n)$ expected time [Chan, 2004]
- ≈ 3/4(d + 2)²-centerpoint, randomized time
 O((d⁵ log d)^{log₂ d}) [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996]
- ► Can be derandomized [Miller and Sheehy, 2010]
- **Open:** $\approx 1/(d+1)$ -centerpoint in O(poly(d)) time?

Theorem [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996] $P \subset \mathbb{R}^d$: set of *n* points.

With random sampling, $1/(4(d+2)^2)$ -centerpoint in time $O(d^9 \log d)$.

Theorem [Clarkson, Eppstein, Miller, Sturtivant, and Teng, 1996] $P \subset \mathbb{R}^d$: set of *n* points.

With random sampling, $1/(4(d+2)^2)$ -centerpoint in time $O(d^9 \log d)$.

Our result

With random sampling, $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

Our result

With random sampling, a $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

Our result

With random sampling, a $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

• Approximate centerpoint for d + O(1) points in \mathbb{R}^d ?

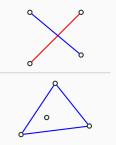
Our result

With random sampling, a $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

- Approximate centerpoint for d + O(1) points in \mathbb{R}^d ?
- Yes! Radon's Theorem.

Radon's Theorem

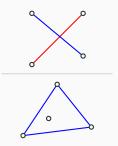
- $P \subset \mathbb{R}^d$: set of d + 2 points.
- $\exists \text{ partition } P = Q \sqcup R \text{ s.t.} \\ \operatorname{conv}(Q) \cap \operatorname{conv}(R) \neq \varnothing.$



Radon's Theorem

 $P \subset \mathbb{R}^d$: set of d + 2 points.

 $\exists \text{ partition } P = Q \sqcup R \text{ s.t.} \\ \operatorname{conv}(Q) \cap \operatorname{conv}(R) \neq \varnothing.$

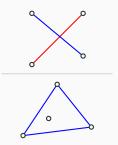


• Radon point: compute in $O(d^3)$ time.

Radon's Theorem

 $P \subset \mathbb{R}^d$: set of d + 2 points.

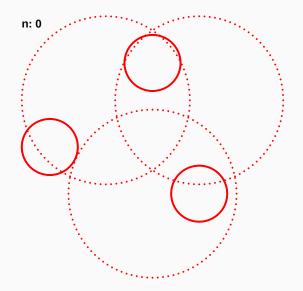
 $\exists \text{ partition } P = Q \sqcup R \text{ s.t.} \\ \operatorname{conv}(Q) \cap \operatorname{conv}(R) \neq \varnothing.$

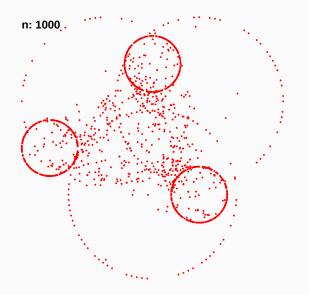


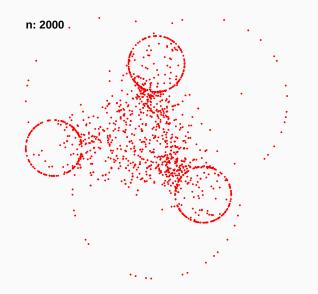
- Radon point: compute in $O(d^3)$ time.
- Radon point: 2/(d+2)-centerpoint for *P*.

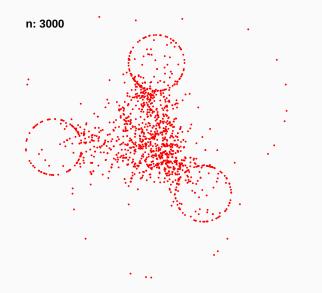
A simplified variant of [Clarkson, Eppstein, et al., 1996].

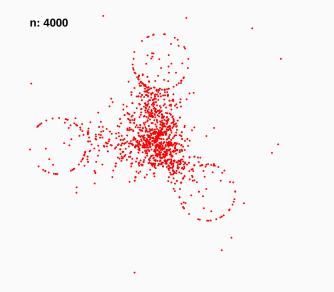
- 1. $Q \subseteq P$ sample of size $\approx O(d^3 \log d)$ [Li, Long, et al., 2001]
- 2. For *i* = 1, . . . , *O*(*d*|*Q*|):
 - 2.1 Sample d + 2 points of Q
 - 2.2 Compute their radon point r
 - 2.3 Add *r* to **Q**
 - 2.4 Delete a random point from Q (which isn't r)



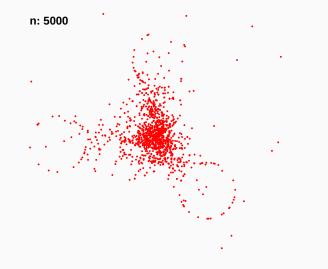


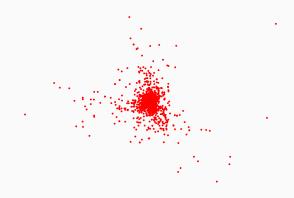


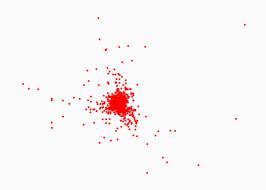


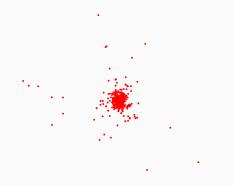


9/17









۵.

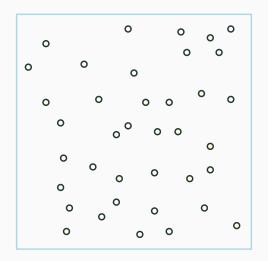
٠

.

.

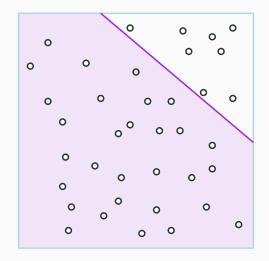
q is an α -centerpoint for P

all halfspaces h^+ with $|P \cap h^+| > (1 - \alpha)|P|$ contain q

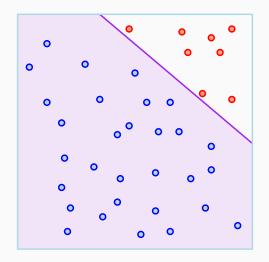


 \Leftarrow

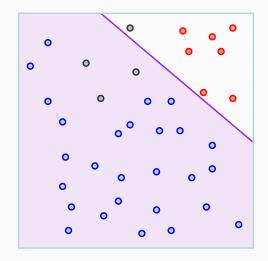
q is an α -centerpoint for P



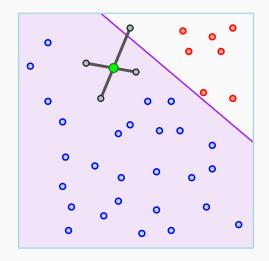
q is an α -centerpoint for P



q is an α -centerpoint for P

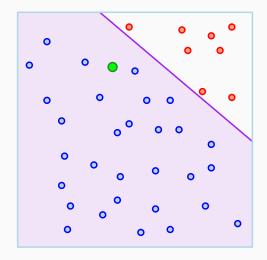


q is an α -centerpoint for P

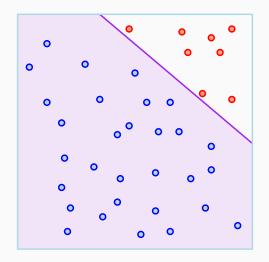


q is an α -centerpoint for P

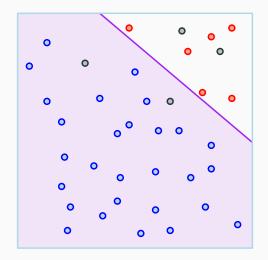
 \iff



q is an α -centerpoint for P

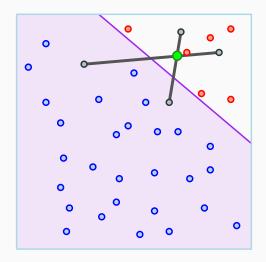


q is an α -centerpoint for P

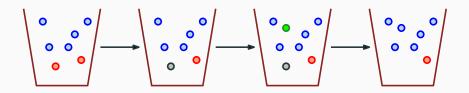


q is an α -centerpoint for P

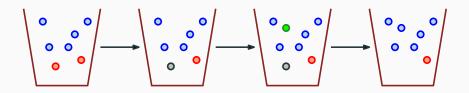
 \iff



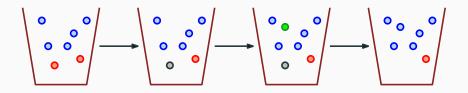
• Urn with *b* blue balls, r = m - b red balls.



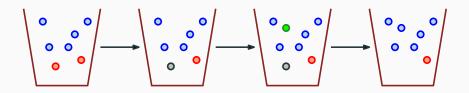
- Urn with *b* blue balls, r = m b red balls.
- In each round:



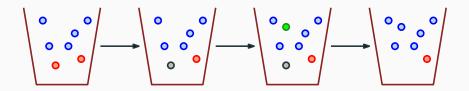
- Urn with *b* blue balls, r = m b red balls.
- In each round:
 - 1. Mark a ball for deletion.



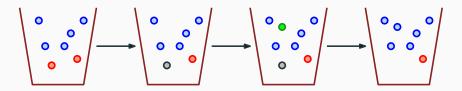
- Urn with *b* blue balls, r = m b red balls.
- In each round:
 - 1. Mark a ball for deletion.
 - 2. Sample d + 2 balls.



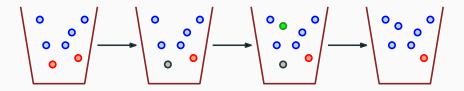
- Urn with *b* blue balls, r = m b red balls.
- In each round:
 - 1. Mark a ball for deletion.
 - 2. Sample d + 2 balls.
 - If ≥ 2 balls in sample are red, add a red ball. Otherwise, add a blue ball.



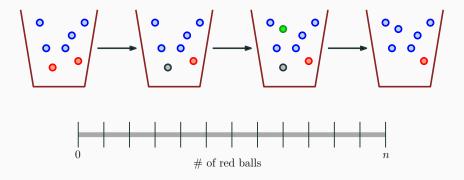
- Urn with *b* blue balls, r = m b red balls.
- In each round:
 - 1. Mark a ball for deletion.
 - 2. Sample d + 2 balls.
 - If ≥ 2 balls in sample are red, add a red ball. Otherwise, add a blue ball.
 - 4. Remove marked ball from urn.



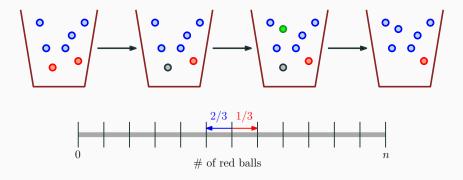
Random walk process



Random walk process

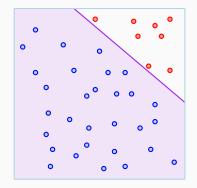


Random walk process



Problem

Number of rounds until all balls are blue?

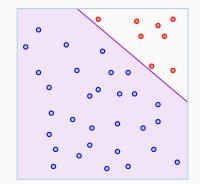


Problem

Number of rounds until all balls are blue?

Our result

When # of balls *m* is sufficiently large: $O(m \log^2 m)$ rounds.



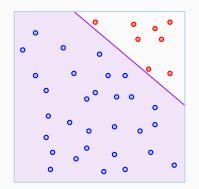
Problem

Number of rounds until all balls are blue?

Our result

When # of balls m is sufficiently large: $O(m \log^2 m)$ rounds.

 Simulate random walk process in parallel for all O(n^d) halfspaces.



 $P \subset \mathbb{R}^d$: set of *n* points.

With random sampling, $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

 $P \subset \mathbb{R}^d$: set of *n* points.

With random sampling, $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

► Radon points: quick to compute, good centerpoints

 $P \subset \mathbb{R}^d$: set of *n* points.

With random sampling, $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

- Radon points: quick to compute, good centerpoints
- Algorithm is many parallel random walks

 $P \subset \mathbb{R}^d$: set of *n* points.

With random sampling, $\approx 1/(d+2)^2$ -centerpoint in time $O(d^7 \log d)$.

- Radon points: quick to compute, good centerpoints
- Algorithm is many parallel random walks

Problem

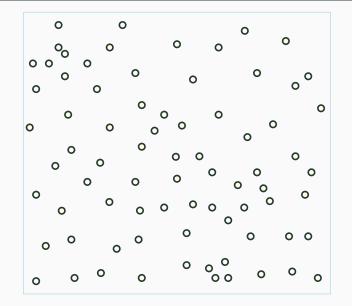
 $\approx 1/d$ -centerpoints in O(poly(d)) time?

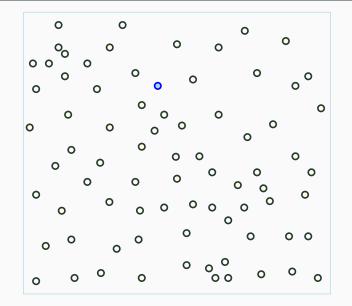
Definition: center nets

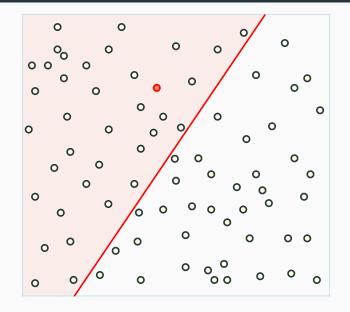
- $P \subset \mathbb{R}^d$: set of *n* points.
- $Q \subset \mathbb{R}^d$, (ε, α) -center net if \forall convex bodies $C \subseteq \mathbb{R}^d$:
- $|P \cap C| \ge \varepsilon n \implies \exists q \in Q \cap C, q \text{ an } \alpha \text{-centerpoint of } P \cap C.$

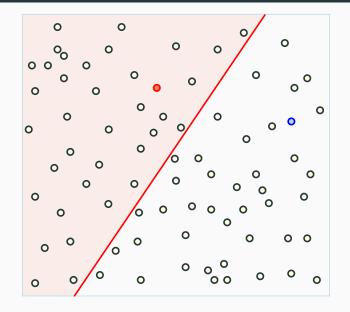
Our result

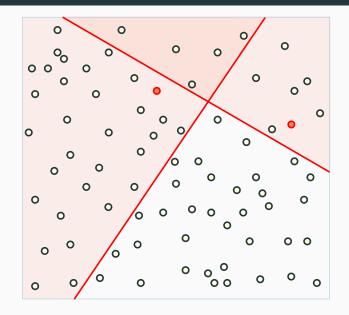
There exists an $\left(\varepsilon, \Omega\left(\frac{1}{d\log \varepsilon^{-1}}\right)\right)$ -center net for *P* of size $\widetilde{O}\left((d^2/\varepsilon)^{d^2}\right)$.

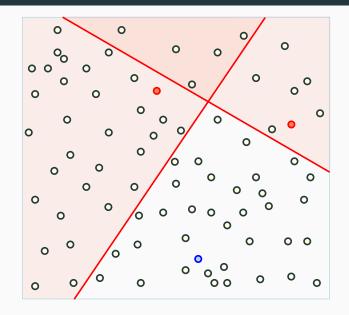


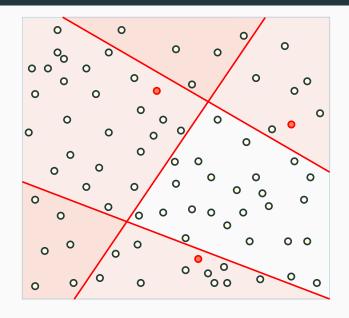


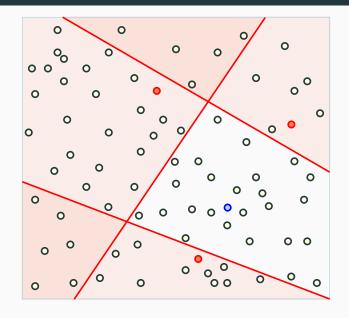


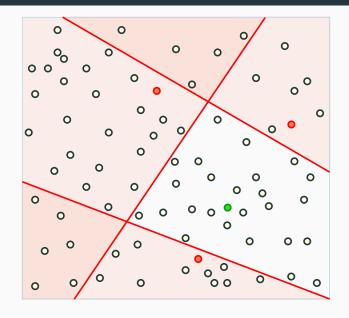


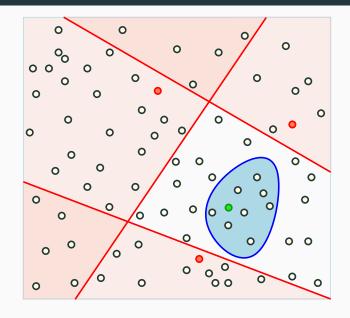












Our result

Can verify if $|C \cap P| \leq \varepsilon n$ with $O(d^2 \log \varepsilon^{-1})$ oracle queries to C, in $\widetilde{O}(d^9/\varepsilon)$ randomized time.

Our result

Can verify if $|C \cap P| \leq \varepsilon n$ with $O(d^2 \log \varepsilon^{-1})$ oracle queries to C, in $\widetilde{O}(d^9/\varepsilon)$ randomized time.

• Weak ε -nets in a different model

Our result

Can verify if $|C \cap P| \leq \varepsilon n$ with $O(d^2 \log \varepsilon^{-1})$ oracle queries to C, in $\widetilde{O}(d^9/\varepsilon)$ randomized time.

- Weak ε -nets in a different model
- Weak ε-nets have exponential dependency on d [Matoušek and Wagner, 2004] [Mustafa and Ray, 2008]

Studene Treastor

Our result

Can verify if $|C \cap P| \leq \varepsilon n$ with $O(d^2 \log \varepsilon^{-1})$ oracle queries to C, in $\widetilde{O}(d^9/\varepsilon)$ randomized time.

- Weak ε-nets in a different model
- Weak ε-nets have exponential dependency on d [Matoušek and Wagner, 2004] [Mustafa and Ray, 2008]
- What models can we obtain similar results with better dependency on d?

- T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. 430–436, 2004.
- K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S.-H. Teng. Approximating center points with iterative Radon points. Internat. J. Comput. Geom. Appl., 6: 357–377, 1996.
- G. L. Miller and D. R. Sheehy. Approximate centerpoints with proofs. Comput. Geom., 43(8): 647–654, 2010.
- Y. Li, P. M. Long, and A. Srinivasan. *Improved bounds on the sample complexity of learning. J. Comput. Syst. Sci.*, 62(3): 516–527, 2001.
- J. Matoušek and U. Wagner. New constructions of weak epsilon-nets. Discrete Comput. Geom., 32(2): 195–206, 2004.

- N. H. Mustafa and S. Ray. Weak ε-nets have basis of size O(ε⁻¹ log ε⁻¹) in any dimension. Comput. Geom. Theory Appl., 40(1): 84–91, 2008.
- V Vapnik and A Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. 1971.