
Locality-Sensitive Orderings & Their

Applications

Timothy Chan, Sariel Har-Peled, Mitchell Jones

September 11, 2018

University of Illinois at Urbana-Champaign

1/32

Orderings: Motivation

I Computing orderings:

I Travelling salesman problem (hard)
I Degeneracy of a graph (easy)

I Orderings are 1D embeddings

I Embedding into simpler structures

I E.g. O(log n)-apx for k-median clustering: Metric space → tree

I Tradeoff between soln. quality and simpler algorithms

I In this talk: Orderings of points with special properties

2/32

Orderings: Motivation

I Computing orderings:

I Travelling salesman problem (hard)
I Degeneracy of a graph (easy)

I Orderings are 1D embeddings

I Embedding into simpler structures

I E.g. O(log n)-apx for k-median clustering: Metric space → tree

I Tradeoff between soln. quality and simpler algorithms

I In this talk: Orderings of points with special properties

2/32

Orderings: Motivation

I Computing orderings:

I Travelling salesman problem (hard)
I Degeneracy of a graph (easy)

I Orderings are 1D embeddings

I Embedding into simpler structures

I E.g. O(log n)-apx for k-median clustering: Metric space → tree

I Tradeoff between soln. quality and simpler algorithms

I In this talk: Orderings of points with special properties

2/32

Orderings: Motivation

I Computing orderings:

I Travelling salesman problem (hard)
I Degeneracy of a graph (easy)

I Orderings are 1D embeddings

I Embedding into simpler structures

I E.g. O(log n)-apx for k-median clustering: Metric space → tree

I Tradeoff between soln. quality and simpler algorithms

I In this talk: Orderings of points with special properties

2/32

Orderings: Motivation

I Computing orderings:

I Travelling salesman problem (hard)
I Degeneracy of a graph (easy)

I Orderings are 1D embeddings

I Embedding into simpler structures

I E.g. O(log n)-apx for k-median clustering: Metric space → tree

I Tradeoff between soln. quality and simpler algorithms

I In this talk: Orderings of points with special properties

2/32

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

3/32

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

Some applications

I New: (1 + ε)-apx bichromatic closest pair

I Simpler: dynamic (1 + ε)-spanners

I New: dynamic k-vertex-fault-tolerant (1 + ε)-spanners

I ...

3/32

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

Some applications

I New: (1 + ε)-apx bichromatic closest pair

I Simpler: dynamic (1 + ε)-spanners

I New: dynamic k-vertex-fault-tolerant (1 + ε)-spanners

I ...

3/32

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

Some applications

I New: (1 + ε)-apx bichromatic closest pair

I Simpler: dynamic (1 + ε)-spanners

I New: dynamic k-vertex-fault-tolerant (1 + ε)-spanners

I ...

3/32

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

Some applications

I New: (1 + ε)-apx bichromatic closest pair

I Simpler: dynamic (1 + ε)-spanners

I New: dynamic k-vertex-fault-tolerant (1 + ε)-spanners

I ...

3/32

Warmup: Constant factor

approximation for bichromatic

closest pair

Bichromatic closest pair

1

2

3

4 5 6

7

8

9

11

12

10

Problem (c-approximation)

Maintain a pair (r ′, b′) s.t. ‖r ′ − b′‖ ≤ c ·min
(r ,b)
‖r − b‖.

4/32

Bichromatic closest pair

1

2

3

4 5 6

7

8

9

11

12

10

Problem (c-approximation)

Maintain a pair (r ′, b′) s.t. ‖r ′ − b′‖ ≤ c ·min
(r ,b)
‖r − b‖.

4/32

Preliminaries: Quadtrees

“Hierarchy of grids”

`

`/2

`/4

. . .

5/32

Preliminaries: Z-order

Mapping points into 1D

6/32

Preliminaries: Quadtrees and Z-order

I DFS of a quadtree produces a Z-order

I Only need to specify an order on 4 cells (or 2d for higher dimensions)

. . .

1 3 2 4

1.1 1.3 1.2 1.4

7/32

Preliminaries: Quadtrees and Z-order

I DFS of a quadtree produces a Z-order

I Only need to specify an order on 4 cells (or 2d for higher dimensions)

. . .

1 3 2 4

1.1 1.3 1.2 1.4

7/32

Preliminaries: Computing the Z-order

I Let p = (x , y) ∈ [2w]× [2w]

I x = xwxw−1 . . . x1

I y = ywyw−1 . . . y1

I shuffle(p) = ywxwyw−1xw−1 . . . y1x1

I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma

shuffle(p) and shuffle(q) can be compared in O(1) and/exclusive-or

operations.

8/32

Preliminaries: Computing the Z-order

I Let p = (x , y) ∈ [2w]× [2w]

I x = xwxw−1 . . . x1

I y = ywyw−1 . . . y1

I shuffle(p) = ywxwyw−1xw−1 . . . y1x1

I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma

shuffle(p) and shuffle(q) can be compared in O(1) and/exclusive-or

operations.

8/32

Preliminaries: Computing the Z-order

I Let p = (x , y) ∈ [2w]× [2w]

I x = xwxw−1 . . . x1

I y = ywyw−1 . . . y1

I shuffle(p) = ywxwyw−1xw−1 . . . y1x1

I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma

shuffle(p) and shuffle(q) can be compared in O(1) and/exclusive-or

operations.

8/32

Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order in binary

tree

I Maintain min-heap of

consecutive red/blue pairs

I Updates change O(1)

consecutive pairs

=⇒ Update time Od(log n)

p

q

⇓ Delete p

⇓ Insert q

9/32

Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order in binary

tree

I Maintain min-heap of

consecutive red/blue pairs

I Updates change O(1)

consecutive pairs

=⇒ Update time Od(log n)

p

q

⇓ Delete p

⇓ Insert q

9/32

Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order in binary

tree

I Maintain min-heap of

consecutive red/blue pairs

I Updates change O(1)

consecutive pairs

=⇒ Update time Od(log n)

p

q

⇓ Delete p

⇓ Insert q

9/32

Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order in binary

tree

I Maintain min-heap of

consecutive red/blue pairs

I Updates change O(1)

consecutive pairs

=⇒ Update time Od(log n)

p

q

⇓ Delete p

⇓ Insert q

9/32

Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order in binary

tree

I Maintain min-heap of

consecutive red/blue pairs

I Updates change O(1)

consecutive pairs

=⇒ Update time Od(log n)

p

q

⇓ Delete p

⇓ Insert q

9/32

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

10/32

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

10/32

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

10/32

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

10/32

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

4

3 6 7

8

5

12

10

11

9

10/32

Preliminaries: Shifting

Lemma [Chan ’98]

For i = 0, . . . , d , let vi = (i/(d + 1), . . . , i/(d + 1)).

Let p, q ∈ [0, 1)d and T be a quadtree over [0, 2)d .

There exists i ∈ {0, . . . , d} and � ∈ T:

1. p + vi , q + vi ∈ �

2. (d + 1)‖p − q‖ < sidelength(�) ≤ 2(d + 1)‖p − q‖.

11/32

A correct solution

I Shift point set d + 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time

I Claim: Od(1) approximation

12/32

A correct solution

I Shift point set d + 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time

I Claim: Od(1) approximation

12/32

A correct solution

I Shift point set d + 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time

I Claim: Od(1) approximation

12/32

A correct solution

I Shift point set d + 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time

I Claim: Od(1) approximation

12/32

Correctness (cont.)

b

r

13/32

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

13/32

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rb

13/32

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rbb′ r′

13/32

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rbb′ r′

‖r′ − b′‖ ≤ diam(�) ≤
√
d · sidelength(�) = Od(1)‖r − b‖

13/32

(1 + ε)-approximate bichromatic

closest pair

Reducing the approximation factor

I Assume ε = 2−E for E ∈ N

I Idea: Pack many “ε-quadtrees”

into a regular quadtree

I ε-quadtrees have 1/εd children

I “Partitions” a regular quadtree

into lg(1/ε) ε-quadtrees

I Call them T1
ε , . . . ,T

E
ε

14/32

Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many “ε-quadtrees”

into a regular quadtree

I ε-quadtrees have 1/εd children

I “Partitions” a regular quadtree

into lg(1/ε) ε-quadtrees

I Call them T1
ε , . . . ,T

E
ε

14/32

Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many “ε-quadtrees”

into a regular quadtree

I ε-quadtrees have 1/εd children

I “Partitions” a regular quadtree

into lg(1/ε) ε-quadtrees

I Call them T1
ε , . . . ,T

E
ε

14/32

Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many “ε-quadtrees”

into a regular quadtree

I ε-quadtrees have 1/εd children

I “Partitions” a regular quadtree

into lg(1/ε) ε-quadtrees

I Call them T1
ε , . . . ,T

E
ε

1

1/2

1/4

1/8

1/16

. . .

ε = 2−3

14/32

Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many “ε-quadtrees”

into a regular quadtree

I ε-quadtrees have 1/εd children

I “Partitions” a regular quadtree

into lg(1/ε) ε-quadtrees

I Call them T1
ε , . . . ,T

E
ε

1

1/2

1/4

1/8

1/16

. . .

ε = 2−3

14/32

Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many “ε-quadtrees”

into a regular quadtree

I ε-quadtrees have 1/εd children

I “Partitions” a regular quadtree

into lg(1/ε) ε-quadtrees

I Call them T1
ε , . . . ,T

E
ε

1

1/2

1/4

1/8

1/16

. . .

ε = 2−3

14/32

O(1) problems

Extend Z-order to ε-quadtrees by ordering 1/εd child cells

2

4

6

7

8

10

11

12 13

1415

161

9

5

3

What Z-order should we pick?

15/32

O(1) problems (cont.)

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

16/32

O(1) problems (cont.)

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

�p

�q

16/32

O(1) problems (cont.)

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

�p

�q

Iq Ip

16/32

Ordering quadtree cells

Idea

Pick a set O of orderings of the 1/εd cells such that:

For any �1,�2, there is an ordering σ ∈ O with �1 adjacent to �2

17/32

A necessary subproblem

Lemma [Alspach ’08]

For n elements {0, . . . , n − 1}, there is a set O of dn/2e orderings of the

elements, such that, for all i , j ∈ {0, . . . , n − 1}, there exist an ordering

σ ∈ O in which i and j are adjacent.

vi
vi vi vi

vi vi

18/32

Ordering quadtree cells

Corollary

There is a set O(1/ε) of O(1/εd) orderings, such that for any �1,�2,

there exists an order σ ∈ O(1/ε) where �1 and �2 are adjacent in σ.

19/32

What we have so far

I d + 1 shifted point sets

I lg(1/ε) ε-quadtrees

I O(1/εd) orderings

=⇒ Od

(
(1/εd) log(1/ε)

)
different orderings of P

I Let Π denote these set of orderings

20/32

What we have so far

I d + 1 shifted point sets

I lg(1/ε) ε-quadtrees

I O(1/εd) orderings

=⇒ Od

(
(1/εd) log(1/ε)

)
different orderings of P

I Let Π denote these set of orderings

20/32

What we have so far

I d + 1 shifted point sets

I lg(1/ε) ε-quadtrees

I O(1/εd) orderings

=⇒ Od

(
(1/εd) log(1/ε)

)
different orderings of P

I Let Π denote these set of orderings

20/32

What we have so far

I d + 1 shifted point sets

I lg(1/ε) ε-quadtrees

I O(1/εd) orderings

=⇒ Od

(
(1/εd) log(1/ε)

)
different orderings of P

I Let Π denote these set of orderings

20/32

What we have so far

I d + 1 shifted point sets

I lg(1/ε) ε-quadtrees

I O(1/εd) orderings

=⇒ Od

(
(1/εd) log(1/ε)

)
different orderings of P

I Let Π denote these set of orderings

20/32

What we have so far

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

21/32

What we have so far

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

Lemma

Let p, q ∈ [0, 1)d and σ ∈ Π. Can decide if p ≺σ q using Od(log(1/ε))

bitwise-logical operations.

21/32

The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))

I Update time: O(|Π| · log(n) · log(1/ε)) =

Od((1/εd) log(n) log2(1/ε))

I Space: O(|Π| · n) = Od((n/εd) log(1/ε))

I Claim: Maintains r ′, b′ with ‖r ′ − b′‖ ≤ (1 + ε)‖r − b‖

22/32

The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))

I Update time: O(|Π| · log(n) · log(1/ε)) =

Od((1/εd) log(n) log2(1/ε))

I Space: O(|Π| · n) = Od((n/εd) log(1/ε))

I Claim: Maintains r ′, b′ with ‖r ′ − b′‖ ≤ (1 + ε)‖r − b‖

22/32

The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))

I Update time: O(|Π| · log(n) · log(1/ε)) =

Od((1/εd) log(n) log2(1/ε))

I Space: O(|Π| · n) = Od((n/εd) log(1/ε))

I Claim: Maintains r ′, b′ with ‖r ′ − b′‖ ≤ (1 + ε)‖r − b‖

22/32

The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))

I Update time: O(|Π| · log(n) · log(1/ε)) =

Od((1/εd) log(n) log2(1/ε))

I Space: O(|Π| · n) = Od((n/εd) log(1/ε))

I Claim: Maintains r ′, b′ with ‖r ′ − b′‖ ≤ (1 + ε)‖r − b‖

22/32

The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))

I Update time: O(|Π| · log(n) · log(1/ε)) =

Od((1/εd) log(n) log2(1/ε))

I Space: O(|Π| · n) = Od((n/εd) log(1/ε))

I Claim: Maintains r ′, b′ with ‖r ′ − b′‖ ≤ (1 + ε)‖r − b‖

22/32

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

23/32

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

23/32

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

23/32

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

Ir Ib

σ ∈ Π

23/32

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

Ir Ib

σ ∈ Π

r

b

sidelength(�b) = ε · sidelength(�)

r′

b′

=⇒

23/32

A simple data structure for

dynamic (1 + ε)-spanners

Spanners

Definition
For a set n of P points in Rd and t ≥ 1, a t-spanner of P is a graph

G = (P,E) such that for all p, q ∈ P,

‖p − q‖ ≤ distG (p, q) ≤ t‖p − q‖.

24/32

Construction

I For each σ ∈ Π, connect the n consecutive points with n − 1 edges

I (n − 1)|Π| = Od((n/εd) log(1/ε)) edges

I Maximum degree Od((1/εd) log(1/ε))

I Update time Od((1/εd) log(n) log2(1/ε))

I Claim: G is a (1 + ε)-spanner

25/32

Construction

I For each σ ∈ Π, connect the n consecutive points with n − 1 edges

I (n − 1)|Π| = Od((n/εd) log(1/ε)) edges

I Maximum degree Od((1/εd) log(1/ε))

I Update time Od((1/εd) log(n) log2(1/ε))

I Claim: G is a (1 + ε)-spanner

25/32

Construction

I For each σ ∈ Π, connect the n consecutive points with n − 1 edges

I (n − 1)|Π| = Od((n/εd) log(1/ε)) edges

I Maximum degree Od((1/εd) log(1/ε))

I Update time Od((1/εd) log(n) log2(1/ε))

I Claim: G is a (1 + ε)-spanner

25/32

Construction

I For each σ ∈ Π, connect the n consecutive points with n − 1 edges

I (n − 1)|Π| = Od((n/εd) log(1/ε)) edges

I Maximum degree Od((1/εd) log(1/ε))

I Update time Od((1/εd) log(n) log2(1/ε))

I Claim: G is a (1 + ε)-spanner

25/32

Construction

I For each σ ∈ Π, connect the n consecutive points with n − 1 edges

I (n − 1)|Π| = Od((n/εd) log(1/ε)) edges

I Maximum degree Od((1/εd) log(1/ε))

I Update time Od((1/εd) log(n) log2(1/ε))

I Claim: G is a (1 + ε)-spanner

25/32

Proof idea

I Prove by induction on length of

pairs:

distG (p, q) ≤ (1 + ε)‖p − q‖

I G is a (1 + cdε)-spanner for

const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E

26/32

Proof idea

I Prove by induction on length of

pairs:

distG (p, q) ≤ (1 + ε)‖p − q‖
I G is a (1 + cdε)-spanner for

const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E

26/32

Proof idea

I Prove by induction on length of

pairs:

distG (p, q) ≤ (1 + ε)‖p − q‖
I G is a (1 + cdε)-spanner for

const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E

26/32

Static & dynamic

vertex-fault-tolerant spanners

Fault-tolerant spanners

Definition
For a set of n points P in Rd and t ≥ 1, a k-vertex-fault-tolerant

t-spanner of P is a graph G = (P,E) such that

1. G is a t-spanner, and

2. For any P ′ ⊆ P, |P ′| ≤ k , G \ P ′ is a t-spanner for P \ P ′.

27/32

Construction

I For each σ ∈ Π and each p ∈ P, connect p to it’s k + 1 predecessors

and successors

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges

I Maximum degree Od((k/εd) log(1/ε))

28/32

Construction

I For each σ ∈ Π and each p ∈ P, connect p to it’s k + 1 predecessors

and successors

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges

I Maximum degree Od((k/εd) log(1/ε))

28/32

Construction

I For each σ ∈ Π and each p ∈ P, connect p to it’s k + 1 predecessors

and successors

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges

I Maximum degree Od((k/εd) log(1/ε))

28/32

Update time

Any update changes O(k) edges in G

p

k = 2

q

Update time Od((log n log(1/ε) + k) log(1/ε)/εd)

29/32

Update time

Any update changes O(k) edges in G

p

k = 2

q

Update time Od((log n log(1/ε) + k) log(1/ε)/εd)

29/32

Update time

Any update changes O(k) edges in G

p

k = 2

Update time Od((log n log(1/ε) + k) log(1/ε)/εd)

29/32

Update time

Any update changes O(k) edges in G

p

k = 2

Update time Od((log n log(1/ε) + k) log(1/ε)/εd)

29/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P

30/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P

30/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P
P ′

30/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P
P ′

30/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P

30/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P

30/32

Sketch proof

I G is already a (1 + ε)-spanner

I Consider P ′ ⊆ P, |P ′| ≤ k

I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′ remain

in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1 + ε)-spanner for

P \ P ′

k = 2

P

30/32

Conclusion

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) such that

∀p, q ∈ [0, 1)d , there exists σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p or q.

31/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

1. Approximate nearest neighbor (not new)

2. Dynamic approximate MST (uses dynamic spanners)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

1. Approximate nearest neighbor (not new)

2. Dynamic approximate MST (uses dynamic spanners)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

1. Approximate nearest neighbor (not new)

2. Dynamic approximate MST (uses dynamic spanners)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

1. Approximate nearest neighbor (not new)

2. Dynamic approximate MST (uses dynamic spanners)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1. Approximate nearest neighbor (not new)

2. Dynamic approximate MST (uses dynamic spanners)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1. Approximate nearest neighbor (not new)

2. Dynamic approximate MST (uses dynamic spanners)

32/32

	Warmup: Constant factor approximation for bichromatic closest pair
	Problem definition
	Preliminaries
	The solution

	(1 +)-approximate bichromatic closest pair
	Intuition
	The solution

	A simple data structure for dynamic (1+)-spanners
	Static & dynamic vertex-fault-tolerant spanners
	Conclusion

