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Orderings: Motivation

» Computing orderings:
> Travelling salesman problem (hard)
» Degeneracy of a graph (easy)

» Orderings are 1D embeddings

» Embedding into simpler structures

» E.g. O(logn)-apx for k-median clustering: Metric space — tree
» Tradeoff between soln. quality and simpler algorithms

> In this talk: Orderings of points with special properties
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Main Theorem

For £ € (0,1), there is a set M of size O((1/£9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in o are distance at most ¢||p — g|| from p or g.
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Warmup: Constant factor
approximation for bichromatic
closest pair
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Bichromatic closest pair
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Problem (c-approximation)

Maintain a pair (r',b') s.t. ||[r' = b'|| < c- Embr; ||r — b
r,
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Preliminaries: Quadtrees

“Hierarchy of grids”

0/4
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Preliminaries: Z-order

Mapping points into 1D

NE ~

6/32



Preliminaries: Quadtrees and Z-order

» DFS of a quadtree produces a Z-order
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Preliminaries: Quadtrees and Z-order

» DFS of a quadtree produces a Z-order

» Only need to specify an order on 4 cells (or 27 for higher dimensions)

11131214
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Preliminaries: Computing the Z-order

> Let p=(x,y) € [2"] x [2"]
> X = XwXw—1...-X1

> Y =YwYw-1---1
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Preliminaries: Computing the Z-order

- Let p= (x,y) € [2*] % [2"]
> X = Xy Xpw_1---X1

> Y =WwYw-1---1
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Preliminaries: Computing the Z-order

- Let p= (x,y) € [2*] % [2"]

> X = Xy Xpw_1---X1

> Y =WwYw-1---1

shuffle(p) = ywXwYw—1Xw—1 ... y1X1

v

v

Position of p in Z-order = shuffle(p)

00 01 10 11

Lemma

shuffle(p) and shuffle(q) can be compared in O(1) and/exclusive-or
operations.
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Solving the problem in 1D: A solution?
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» Map the point set to 1D %0—0—0—0—0—0—0—0—02{
p

» Maintain sorted order in binary I Delete p
tree

» Maintain min-heap of %.4_,_._._._F.'/_\‘.+

consecutive red/blue pairs

» Updates change O(1)

consecutive pairs PO o D Ay
q

= Update time Oy(log n)

| Insert ¢
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Not quite a solution
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Not quite a solution

P

e 14
11
b 1T
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Preliminaries: Shifting

Lemma [Chan '98]
Fori=0,...,d, let vy =(i/(d+1),...,i/(d +1)).

Let p,q € [0,1)¢ and T be a quadtree over [0,2)9.
There exists i € {0,...,d} and D € T:

1. p4+v,qg+v,eld
2. (d+1)||p — q| < sidelength(CJ) < 2(d + 1)||p — g
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A correct solution

> Shift point set d + 1 times: Py, ..., Py
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A correct solution

> Shift point set d + 1 times: Py,..., Py

DS for Fy DS for P, o0 c DS for Py

= Oy(log n) update time

» Claim: Oy4(1) approximation
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o b

sidelength(0J) < 2(d + 1)||r — b|
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o b

sidelength(0J) < 2(d + 1)||r — b|

booeee W e T

| — ¥|| < diam(0) < V/d - sidelength(0) = O,4(1)||r — b||
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(1 + ¢)-approximate bichromatic
closest pair
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» Assumee =2"F for Ee N
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Reducing the approximation factor

» Assumee =2"F for Ee N

» l|dea: Pack many “e-quadtrees”
into a regular quadtree

» e-quadtrees have 1/¢9 children

» “Partitions” a regular quadtree

into lg(1/e) e-quadtrees
» Call them T2,...,TF / \
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O(1) problems

Extend Z-order to e-quadtrees by ordering 1/¢9 child cells

10/6|9/3 ¢
711]16]5 2 e
11]15|14] 4

2 112] 8113 SN

What Z-order should we pick?

celsd %




O(1) problems (cont.)

q

sidelength(J) < 2(d+ 1)||p — q||
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O(1) problems (cont.)
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O(1) problems (cont.)
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q —
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Ordering quadtree cells

Idea
Pick a set O of orderings of the 1/¢? cells such that:

For any [y, [y, there is an ordering o € O with [J; adjacent to [,
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A necessary subproblem

Lemma [Alspach '08]

For n elements {0,...,n — 1}, there is a set O of [n/2] orderings of the
elements, such that, for all i,j € {0,...,n— 1}, there exist an ordering

o € O in which i and j are adjacent.
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Ordering quadtree cells

Corollary

There is a set O(1/¢) of O(1/£9) orderings, such that for any Oy, [y,
there exists an order o € O(1/¢) where [J; and [, are adjacent in o.
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What we have so far

» d + 1 shifted point sets
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What we have so far

v

d + 1 shifted point sets

v

lg(1/e) e-quadtrees
O(1/%) orderings
= 04((1/9)log(1/¢)) different orderings of P

Let IT denote these set of orderings

v

v
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What we have so far

Main Theorem

For £ € (0,1), there is a set M of size O((1/e9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in ¢ are distance at most ¢||p — g|| from p or g.
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What we have so far

Main Theorem

For £ € (0,1), there is a set M of size O((1/e9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in ¢ are distance at most ¢||p — g|| from p or g.

Lemma

Let p,q € [0,1)¢ and o € M. Can decide if p <, g using Og(log(1/¢))
bitwise-logical operations.
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The solution

» Maintain the 1D data structure for all orderings [l
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The solution

» Maintain the 1D data structure for all orderings [l

~ || = O((1/%) log(1/))

» Update time: O(|M] - log(n) - log(1/¢)) =
04((1/2%) log(n) log*(1/¢))
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The solution

v

Maintain the 1D data structure for all orderings Il
M| = 0((1/2%) log(1/))

Update time: O(|M] - log(n) - log(1/¢)) =
04((1/2%) log(n) log*(1/¢))

Space: O(|M| - n) = O4((n/e9)log(1/¢))

v

v

v
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The solution

» Maintain the 1D data structure for all orderings [l
> |N| = 0((1/¢7) log(1/¢))
» Update time: O(|M] - log(n) - log(1/¢)) =
04((1/2) log(n) log*(1/¢))
» Space: O(|N]-n) = O4((n/e%)log(1/e))
» Claim: Maintains r/, b’ with ||r" — b'|| < (1 +¢€)||r — b]|

22/32



Correctness

<

sidelength(d) < 2(d + 1)|r — b||
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Correctness
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Correctness

=

b

oell
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Correctness
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=
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A simple data structure for
dynamic (1 + ¢)-spanners




Definition
For a set n of P points in RY and t > 1, a t-spanner of P is a graph
G = (P, E) such that for all p,q € P,

lp— gl < diste(p, q) < tl|p— ql|.
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» For each o € [, connect the n consecutive points with n — 1 edges
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» For each o € [, connect the n consecutive points with n — 1 edges
» (n—1)|N] = Oy((n/c) log(1/c)) edges
» Maximum degree Oy((1/c7)log(1/¢))
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v

For each o € I1, connect the n consecutive points with n — 1 edges
(n—1)IM| = O4((n/=?) log(1/c)) edges

Maximum degree O4((1/e%)log(1/¢))

Update time Oy4((1/2%) log(n) log?(1/¢))

v

A\

v
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v

For each o € I1, connect the n consecutive points with n — 1 edges
(n—1)IM| = O4((n/=?) log(1/c)) edges

Maximum degree O4((1/e%)log(1/¢))

Update time Oy4((1/2%) log(n) log?(1/¢))

Claim: G is a (1 + €)-spanner

v

A\

v

v

25/32



Je
. . Q[
» Prove by induction on length of P’ \p/q, cE
pairs: « -
dist(p.q) < (1+ &)~ gl N
AN /Dq
q\.X q/

sidelength(0J) < 2(d + 1)||p — ¢|
sidelength(OJ,) = ¢ - sidelength((J)
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» Prove by induction on length of AP '
p e E
o < N

pairs:

distc(p, a) < (1+2)llp— g \\\ ]
» G is a (1+ cyge)-spanner for \\ \ P

const. ¢y q\. -8y

sidelength(0J) < 2(d + 1)||p — ¢|
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Je
» Prove by induction on length of AP '
p Pq|leE
o < N

pairs: .

distc(p, a) < (1+2)llp— g \\\ ]
» G is a (1+ cyge)-spanner for \\ \ P

const. ¢y qle-®y

- eeelsi e 7 @ sidelength(0J) < 2(d + 1)||p — ¢|

sidelength(OJ,) = ¢ - sidelength((J)
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Static & dynamic
vertex-fault-tolerant spanners




Fault-tolerant spanners

Definition
For a set of n points P in RY and t > 1, a k-vertex-fault-tolerant
t-spanner of P is a graph G = (P, E) such that

1. G is a t-spanner, and
2. Forany P" C P, |P'| < k, G\ P is a t-spanner for P\ P'.

27/32



» For each o € I1 and each p € P, connect p to it's k + 1 predecessors
and successors
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» For each o € I1 and each p € P, connect p to it's k + 1 predecessors
and successors

» O(kn|N|) = O4((kn/c?)log(1/e)) edges
» Maximum degree Oy((k/e9)log(1/¢))
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Any update changes O(k) edges in G

k=2
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Any update changes O(k) edges in G

Update time Oy((log nlog(1/¢) + k) log(1/¢)/e9)
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Sketch proof

» G is already a (1 + €)-spanner
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Sketch proof

G is already a (1 + ¢)-spanner
Consider PP C P, |P'| < k

Let o € M with P’ removed
» Consecutive points in P\ P’ remain m
P \ » N\

in G\ P’ (by construction)

v

v
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Sketch proof

G is already a (1 + ¢)-spanner
Consider PP C P, |P'| < k

Let o € M with P’ removed m
» Consecutive points in P\ P’ remain n

_ tive p "\ P ’
in G\ P’ (by construction)

= G\ P’ is a (1+ &)-spanner for
P\ P’

v

v

v
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Conclusion




Main Theorem

For £ € (0,1), there is a set M of size O((1/e%) log(1/¢)) such that
Vp, q € [0,1)7, there exists o € I with:

Points between p and ¢ in o are distance at most ¢||p — q|| from p or g.
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Applications

3.
4.

Approximate bichromatic closest pair (improved update time to
O(log n))

Dynamic spanners (simpler data structure)

Static vertex-fault-tolerant spanners (simple data structure)

Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1.
2.

Approximate nearest neighbor (not new)

Dynamic approximate MST (uses dynamic spanners)
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