Locality-Sensitive Orderings \& Their Applications

Timothy Chan, Sariel Har-Peled, Mitchell Jones
September 11, 2018
University of Illinois at Urbana-Champaign

Orderings: Motivation

- Computing orderings:
- Travelling salesman problem (hard)
- Degeneracy of a graph (easy)

Orderings: Motivation

- Computing orderings:
- Travelling salesman problem (hard)
- Degeneracy of a graph (easy)
- Orderings are 1D embeddings
- Embedding into simpler structures

Orderings: Motivation

- Computing orderings:
- Travelling salesman problem (hard)
- Degeneracy of a graph (easy)
- Orderings are 1D embeddings
- Embedding into simpler structures
- E.g. $O(\log n)$-apx for k-median clustering: Metric space \rightarrow tree

Orderings: Motivation

- Computing orderings:
- Travelling salesman problem (hard)
- Degeneracy of a graph (easy)
- Orderings are 1D embeddings
- Embedding into simpler structures
- E.g. $O(\log n)$-apx for k-median clustering: Metric space \rightarrow tree
- Tradeoff between soln. quality and simpler algorithms

Orderings: Motivation

- Computing orderings:
- Travelling salesman problem (hard)
- Degeneracy of a graph (easy)
- Orderings are 1D embeddings
- Embedding into simpler structures
- E.g. $O(\log n)$-apx for k-median clustering: Metric space \rightarrow tree
- Tradeoff between soln. quality and simpler algorithms
- In this talk: Orderings of points with special properties

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that
$\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that
$\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Some applications

- New: $(1+\varepsilon)$-apx bichromatic closest pair

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that
$\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Some applications

- New: $(1+\varepsilon)$-apx bichromatic closest pair
- Simpler: dynamic $(1+\varepsilon)$-spanners

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that
$\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Some applications

- New: $(1+\varepsilon)$-apx bichromatic closest pair
- Simpler: dynamic $(1+\varepsilon)$-spanners
- New: dynamic k-vertex-fault-tolerant $(1+\varepsilon)$-spanners

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that
$\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Some applications

- New: $(1+\varepsilon)$-apx bichromatic closest pair
- Simpler: dynamic $(1+\varepsilon)$-spanners
- New: dynamic k-vertex-fault-tolerant $(1+\varepsilon)$-spanners
- ...

Warmup: Constant factor approximation for bichromatic closest pair

Bichromatic closest pair

Bichromatic closest pair

			$\bullet 9$				
.8						12	
			$\bullet \bullet$	10	11		
	$4 \bullet$	5	6		\bullet		
		.2					
	$\bullet 1$						
					$\bullet 3$		

Problem (c-approximation)
Maintain a pair $\left(r^{\prime}, b^{\prime}\right)$ s.t. $\left\|r^{\prime}-b^{\prime}\right\| \leq c \cdot \min _{(r, b)}\|r-b\|$.

Preliminaries: Quadtrees

"Hierarchy of grids"

Preliminaries: z-order

Mapping points into 1D

Preliminaries: Quadtrees and z-order

- DFS of a quadtree produces a z-order

Preliminaries: Quadtrees and z-order

- DFS of a quadtree produces a z-order
- Only need to specify an order on 4 cells (or 2^{d} for higher dimensions)

Preliminaries: Computing the z-order

- Let $p=(x, y) \in\left[2^{w}\right] \times\left[2^{w}\right]$
- $x=x_{w} x_{w-1} \ldots x_{1}$
- $y=y_{w} y_{w-1} \ldots y_{1}$

Preliminaries: Computing the z-order

- Let $p=(x, y) \in\left[2^{w}\right] \times\left[2^{w}\right]$
- $x=x_{w} x_{w-1} \ldots x_{1}$
- $y=y_{w} y_{w-1} \ldots y_{1}$
- $\operatorname{shuffle}(p)=y_{w} x_{w} y_{w-1} x_{w-1} \ldots y_{1} x_{1}$
- Position of p in Z-order $=\operatorname{shuffle}(p)$

Preliminaries: Computing the z-order

- Let $p=(x, y) \in\left[2^{w}\right] \times\left[2^{w}\right]$
- $x=x_{w} x_{w-1} \ldots x_{1}$
- $y=y_{w} y_{w-1} \ldots y_{1}$
- $\operatorname{shuffle}(p)=y_{w} x_{w} y_{w-1} x_{w-1} \ldots y_{1} x_{1}$
- Position of p in Z-order $=\operatorname{shuffle}(p)$

Lemma

shuffle (p) and shuffle (q) can be compared in $O(1)$ and/exclusive-or operations.

Solving the problem in 1D: A solution?

- Map the point set to 1D

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order in binary tree

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order in binary tree

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order in binary tree

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order in binary tree
- Maintain min-heap of consecutive red/blue pairs
- Updates change $O(1)$ consecutive pairs
\Longrightarrow Update time $O_{d}(\log n)$

\Downarrow Delete p

\Downarrow Insert q

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order

			$\bullet 9$			l	
$\bullet 8$						\bullet	
			$\bullet \cdot$	\bullet	10	11	
	4	\bullet	5	6	\bullet	\bullet	
		0^{2}					
	$\bullet 1$						
					$\bullet 3$		

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

				$\bullet 12$			
	$\bullet 5$						\bullet
				\bullet	\bullet	\bullet	9
		10					
		3	\bullet		7	\bullet	\bullet
			2				
		$\bullet 1$	\bullet				
		\bullet					
						$\bullet 4$	

Preliminaries: Shifting

Lemma [Chan '98]

For $i=0, \ldots, d$, let $v_{i}=(i /(d+1), \ldots, i /(d+1))$.
Let $p, q \in[0,1)^{d}$ and \mathcal{T} be a quadtree over $[0,2)^{d}$.
There exists $i \in\{0, \ldots, d\}$ and $\square \in \mathcal{T}$:

1. $p+v_{i}, q+v_{i} \in \square$
2. $(d+1)\|p-q\|<$ sidelength $(\square) \leq 2(d+1)\|p-q\|$.

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

$\Longrightarrow O_{d}(\log n)$ update time

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

$\Longrightarrow O_{d}(\log n)$ update time
- Claim: $O_{d}(1)$ approximation

Correctness (cont.)

Correctness (cont.)

sidelength $(\square) \leq 2(d+1)\|r-b\|$

Correctness (cont.)

Correctness (cont.)

Correctness (cont.)

$(1+\varepsilon)$-approximate bichromatic closest pair

Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$

Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many " ε-quadtrees" into a regular quadtree

Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many " ε-quadtrees" into a regular quadtree
- ε-quadtrees have $1 / \varepsilon^{d}$ children

Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many " ε-quadtrees" into a regular quadtree
- ε-quadtrees have $1 / \varepsilon^{d}$ children

Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many " ε-quadtrees" into a regular quadtree
- ε-quadtrees have $1 / \varepsilon^{d}$ children
- "Partitions" a regular quadtree into $\lg (1 / \varepsilon) \varepsilon$-quadtrees

Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many " ε-quadtrees" into a regular quadtree
- ε-quadtrees have $1 / \varepsilon^{d}$ children
- "Partitions" a regular quadtree into $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- Call them $\mathcal{T}_{\varepsilon}^{1}, \ldots, \mathcal{T}_{\varepsilon}^{E}$

O(1) problems

Extend z-order to ε-quadtrees by ordering $1 / \varepsilon^{d}$ child cells

10	6	9	3
7	1	16	5
11	15	14	4
2	12	8	13

What Z-order should we pick?

$O(1)$ problems (cont.)

sidelength $(\square) \leq 2(d+1)\|p-q\|$

$O(1)$ problems (cont.)

sidelength $(\square) \leq 2(d+1)\|p-q\|$

$O(1)$ problems (cont.)

Ordering quadtree cells

Idea

Pick a set \mathfrak{O} of orderings of the $1 / \varepsilon^{d}$ cells such that:
For any \square_{1}, \square_{2}, there is an ordering $\sigma \in \mathfrak{O}$ with \square_{1} adjacent to \square_{2}

A necessary subproblem

Lemma [Alspach '08]

For n elements $\{0, \ldots, n-1\}$, there is a set \mathfrak{O} of $\lceil n / 2\rceil$ orderings of the elements, such that, for all $i, j \in\{0, \ldots, n-1\}$, there exist an ordering $\sigma \in \mathfrak{O}$ in which i and j are adjacent.

Ordering quadtree cells

Corollary

There is a set $\mathfrak{O}(1 / \varepsilon)$ of $O\left(1 / \varepsilon^{d}\right)$ orderings, such that for any \square_{1}, \square_{2}, there exists an order $\sigma \in \mathfrak{O}(1 / \varepsilon)$ where \square_{1} and \square_{2} are adjacent in σ.

What we have so far

- $d+1$ shifted point sets

What we have so far

- $d+1$ shifted point sets
- $\lg (1 / \varepsilon) \varepsilon$-quadtrees

What we have so far

- $d+1$ shifted point sets
- $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- $O\left(1 / \varepsilon^{d}\right)$ orderings

What we have so far

- $d+1$ shifted point sets
- $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- $O\left(1 / \varepsilon^{d}\right)$ orderings
$\Longrightarrow O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ different orderings of P

What we have so far

- $d+1$ shifted point sets
- $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- $O\left(1 / \varepsilon^{d}\right)$ orderings
$\Longrightarrow O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ different orderings of P
- Let Π denote these set of orderings

What we have so far

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that $\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

What we have so far

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that $\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:
Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Lemma

Let $p, q \in[0,1)^{d}$ and $\sigma \in \Pi$. Can decide if $p \prec_{\sigma} q$ using $O_{d}(\log (1 / \varepsilon))$ bitwise-logical operations.

The solution

- Maintain the 1D data structure for all orderings Π

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time: $O(|\Pi| \cdot \log (n) \cdot \log (1 / \varepsilon))=$ $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time: $O(|\Pi| \cdot \log (n) \cdot \log (1 / \varepsilon))=$ $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$
- Space: $O(|\Pi| \cdot n)=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time: $O(|\Pi| \cdot \log (n) \cdot \log (1 / \varepsilon))=$ $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$
- Space: $O(|\Pi| \cdot n)=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Claim: Maintains r^{\prime}, b^{\prime} with $\left\|r^{\prime}-b^{\prime}\right\| \leq(1+\varepsilon)\|r-b\|$

Correctness

sidelength $(\square) \leq 2(d+1)\|r-b\|$

Correctness

Correctness

Correctness

Correctness

A simple data structure for dynamic $(1+\varepsilon)$-spanners

Spanners

Definition

For a set n of P points in \mathbb{R}^{d} and $t \geq 1$, a t-spanner of P is a graph $G=(P, E)$ such that for all $p, q \in P$,

$$
\|p-q\| \leq \operatorname{dist}_{G}(p, q) \leq t\|p-q\| .
$$

Construction

- For each $\sigma \in \Pi$, connect the n consecutive points with $n-1$ edges

Construction

- For each $\sigma \in \Pi$, connect the n consecutive points with $n-1$ edges - $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges

Construction

- For each $\sigma \in \Pi$, connect the n consecutive points with $n-1$ edges
- $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

Construction

- For each $\sigma \in \Pi$, connect the n consecutive points with $n-1$ edges
- $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$

Construction

- For each $\sigma \in \Pi$, connect the n consecutive points with $n-1$ edges
- $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$
- Claim: G is a $(1+\varepsilon)$-spanner

Proof idea

- Prove by induction on length of pairs: $\operatorname{dist}_{G}(p, q) \leq(1+\varepsilon)\|p-q\|$

sidelength $(\square) \leq 2(d+1)\|p-q\|$
sidelength $\left(\square_{q}\right)=\varepsilon \cdot$ sidelength (\square)

Proof idea

- Prove by induction on length of pairs:
$\operatorname{dist}_{G}(p, q) \leq(1+\varepsilon)\|p-q\|$
- G is a $\left(1+c_{d} \varepsilon\right)$-spanner for const. C_{d}

sidelength $(\square) \leq 2(d+1)\|p-q\|$
sidelength $\left(\square_{q}\right)=\varepsilon \cdot$ sidelength (\square)

Proof idea

- Prove by induction on length of pairs:
$\operatorname{dist}_{G}(p, q) \leq(1+\varepsilon)\|p-q\|$
- G is a $\left(1+c_{d} \varepsilon\right)$-spanner for const. c_{d}
- Readjust ε by c_{d}

sidelength $(\square) \leq 2(d+1)\|p-q\|$
sidelength $\left(\square_{q}\right)=\varepsilon \cdot \operatorname{sidelength}(\square)$

Static \& dynamic
vertex-fault-tolerant spanners

Fault-tolerant spanners

Definition

For a set of n points P in \mathbb{R}^{d} and $t \geq 1$, a k-vertex-fault-tolerant t-spanner of P is a graph $G=(P, E)$ such that

1. G is a t-spanner, and
2. For any $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k, G \backslash P^{\prime}$ is a t-spanner for $P \backslash P^{\prime}$.

Construction

- For each $\sigma \in \Pi$ and each $p \in P$, connect p to it's $k+1$ predecessors and successors

Construction

- For each $\sigma \in \Pi$ and each $p \in P$, connect p to it's $k+1$ predecessors and successors
- $O(k n|\Pi|)=O_{d}\left(\left(k n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges

Construction

- For each $\sigma \in \Pi$ and each $p \in P$, connect p to it's $k+1$ predecessors and successors
- $O(k n|\Pi|)=O_{d}\left(\left(k n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $O_{d}\left(\left(k / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

Update time

Any update changes $O(k)$ edges in G

$$
k=2
$$

Update time

Any update changes $O(k)$ edges in G
$k=2$

Update time

Any update changes $O(k)$ edges in G

Update time

Any update changes $O(k)$ edges in G

Update time $O_{d}\left((\log n \log (1 / \varepsilon)+k) \log (1 / \varepsilon) / \varepsilon^{d}\right)$

Sketch proof

- G is already a $(1+\varepsilon)$-spanner

$$
k=2
$$

Sketch proof

- G is already a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k$

$$
k=2
$$

Sketch proof

- G is already a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k$

$$
k=2
$$

Sketch proof

- G is already a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k$
- Let $\sigma \in \Pi$ with P^{\prime} removed

$$
k=2
$$

Sketch proof

- G is already a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k$

$$
k=2
$$

- Let $\sigma \in \Pi$ with P^{\prime} removed

Sketch proof

- G is already a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k$
- Let $\sigma \in \Pi$ with P^{\prime} removed
- Consecutive points in $P \backslash P^{\prime}$ remain in $G \backslash P^{\prime}$ (by construction)

$$
k=2
$$

Sketch proof

- G is already a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leq k$
- Let $\sigma \in \Pi$ with P^{\prime} removed
- Consecutive points in $P \backslash P^{\prime}$ remain in $G \backslash P^{\prime}$ (by construction)
$\Longrightarrow G \backslash P^{\prime}$ is a $(1+\varepsilon)$-spanner for $P \backslash P^{\prime}$

Conclusion

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ such that $\forall p, q \in[0,1)^{d}$, there exists $\sigma \in \Pi$ with:

Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Applications

1. Approximate bichromatic closest pair (improved update time to $O(\log n))$

Applications

1. Approximate bichromatic closest pair (improved update time to $O(\log n))$
2. Dynamic spanners (simpler data structure)

Applications

1. Approximate bichromatic closest pair (improved update time to $O(\log n))$
2. Dynamic spanners (simpler data structure)
3. Static vertex-fault-tolerant spanners (simple data structure)

Applications

1. Approximate bichromatic closest pair (improved update time to $O(\log n))$
2. Dynamic spanners (simpler data structure)
3. Static vertex-fault-tolerant spanners (simple data structure)
4. Dynamic vertex-fault-tolerant spanners (previous work?)

Applications

1. Approximate bichromatic closest pair (improved update time to $O(\log n))$
2. Dynamic spanners (simpler data structure)
3. Static vertex-fault-tolerant spanners (simple data structure)
4. Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1. Approximate nearest neighbor (not new)

Applications

1. Approximate bichromatic closest pair (improved update time to $O(\log n))$
2. Dynamic spanners (simpler data structure)
3. Static vertex-fault-tolerant spanners (simple data structure)
4. Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1. Approximate nearest neighbor (not new)
2. Dynamic approximate MST (uses dynamic spanners)
