Locality-Sensitive Orderings & Their
Applications

Timothy Chan, Sariel Har-Peled, Mitchell Jones
September 11, 2018

University of lllinois at Urbana-Champaign

1/32

Orderings: Motivation

» Computing orderings:
> Travelling salesman problem (hard)
» Degeneracy of a graph (easy)

2/32

Orderings: Motivation

» Computing orderings:
> Travelling salesman problem (hard)
» Degeneracy of a graph (easy)

» Orderings are 1D embeddings

» Embedding into simpler structures

2/32

Orderings: Motivation

v

Computing orderings:
> Travelling salesman problem (hard)
» Degeneracy of a graph (easy)

v

Orderings are 1D embeddings

v

Embedding into simpler structures

v

E.g. O(log n)-apx for k-median clustering: Metric space — tree

2/32

Orderings: Motivation

v

Computing orderings:
> Travelling salesman problem (hard)
» Degeneracy of a graph (easy)

v

Orderings are 1D embeddings

v

Embedding into simpler structures

v

E.g. O(log n)-apx for k-median clustering: Metric space — tree

v

Tradeoff between soln. quality and simpler algorithms

2/32

Orderings: Motivation

» Computing orderings:
> Travelling salesman problem (hard)
» Degeneracy of a graph (easy)

» Orderings are 1D embeddings

» Embedding into simpler structures

» E.g. O(logn)-apx for k-median clustering: Metric space — tree
» Tradeoff between soln. quality and simpler algorithms

> In this talk: Orderings of points with special properties

2/32

Main Theorem

For £ € (0,1), there is a set M of size O((1/£9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in o are distance at most ¢||p — g|| from p or g.

3/32

Main Theorem

For £ € (0,1), there is a set M of size O((1/£9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in o are distance at most ¢||p — g|| from p or g.

Some applications

» New: (1 + ¢)-apx bichromatic closest pair

3/32

Main Theorem

For £ € (0,1), there is a set M of size O((1/£9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in o are distance at most ¢||p — g|| from p or g.

Some applications
» New: (1 + ¢)-apx bichromatic closest pair

» Simpler: dynamic (1 + &)-spanners

3/32

Main Theorem

For £ € (0,1), there is a set M of size O((1/£9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in o are distance at most ¢||p — g|| from p or g.

Some applications
» New: (1 + ¢)-apx bichromatic closest pair
» Simpler: dynamic (1 + &)-spanners

» New: dynamic k-vertex-fault-tolerant (1 + €)-spanners

3/32

Main Theorem

For £ € (0,1), there is a set M of size O((1/£9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in o are distance at most ¢||p — g|| from p or g.

Some applications
» New: (1 + ¢)-apx bichromatic closest pair
» Simpler: dynamic (1 + &)-spanners
» New: dynamic k-vertex-fault-tolerant (1 + €)-spanners

> Oy

3/32

Warmup: Constant factor
approximation for bichromatic
closest pair

Bichromatic closest pair

X
o3 4
ol W1
1 6
3
1
.3

4/32

Bichromatic closest pair

9
.3 |
FARR
4o ©)
.2
o1
°3

Problem (c-approximation)

Maintain a pair (r',b') s.t. ||[r' = b'|| < c- Embr; ||r — b
r,

4/32

Preliminaries: Quadtrees

“Hierarchy of grids”

0/4

0/2

5/32

Preliminaries: Z-order

Mapping points into 1D

NE ~

6/32

Preliminaries: Quadtrees and Z-order

» DFS of a quadtree produces a Z-order

11131214

7/32

Preliminaries: Quadtrees and Z-order

» DFS of a quadtree produces a Z-order

» Only need to specify an order on 4 cells (or 27 for higher dimensions)

11131214

7/32

Preliminaries: Computing the Z-order

> Let p=(x,y) € [2"] x [2"]
> X = XwXw—1...-X1

> Y =YwYw-1---1

00 01 10 11

8/32

Preliminaries: Computing the Z-order

- Let p= (x,y) € [2*] % [2"]
> X = Xy Xpw_1---X1

> Y =WwYw-1---1

shuffle(p) = ywXwYw—1Xw—1 ... y1X1

v

v

Position of p in Z-order = shuffle(p)

00 01 10 11

8/32

Preliminaries: Computing the Z-order

- Let p= (x,y) € [2*] % [2"]

> X = Xy Xpw_1---X1

> Y =WwYw-1---1

shuffle(p) = ywXwYw—1Xw—1 ... y1X1

v

v

Position of p in Z-order = shuffle(p)

00 01 10 11

Lemma

shuffle(p) and shuffle(q) can be compared in O(1) and/exclusive-or
operations.

8/32

Solving the problem in 1D: A solution?

. ¥ O e
» Map the point set to 1D %0—0—0—0—0—0—0—0—02{
p

| Delete p

W e N

| Insert ¢

PO e T Y
q

9/32

Solving the problem in 1D: A solution?

. ¥ O e
» Map the point set to 1D %0—0—0—0—0—0—0—0—02{
p

» Maintain sorted order in binary | Delete p

W e N

| Insert ¢

PO e T Y
q

tree

9/32

Solving the problem in 1D: A solution?

. ¥ O e
» Map the point set to 1D %0—0—0—0—0—0—0—0—02{
p

» Maintain sorted order in binary I Delete p
tree

» Maintain min-heap of %.4_,_._._._F.'/_\‘.+

consecutive red/blue pairs
| Insert ¢

PO e T Y
q

9/32

Solving the problem in 1D: A solution?

. ¥ O e
» Map the point set to 1D %0—0—0—0—0—0—0—0—02{
p

» Maintain sorted order in binary I Delete p
tree

» Maintain min-heap of %.4_,_._._._F.'/_\‘.+

consecutive red/blue pairs

» Updates change O(1)

consecutive pairs PO o D Ay
q

| Insert ¢

9/32

Solving the problem in 1D: A solution?

. ¥ O e
» Map the point set to 1D %0—0—0—0—0—0—0—0—02{
p

» Maintain sorted order in binary I Delete p
tree

» Maintain min-heap of %.4_,_._._._F.'/_\‘.+

consecutive red/blue pairs

» Updates change O(1)

consecutive pairs PO o D Ay
q

= Update time Oy(log n)

| Insert ¢

9/32

Not quite a solution

9
5 12
» Points nearby in R? =4 .O.i 10 11
nearby in Z-order Ao 9 O
2
[]
o1
*3

10/32

Not quite a solution

9
3 i2
[
» Points nearby in R? =4 oo .1) 11
nearby in Z-order 4e 9 0
> Idea: Shift the point set 2
[]
o1
*3

10/32

Not quite a solution

9
3 2
[
» Points nearby in R? =4 oo .1) 11

nearby in Z-order 4e 9 0
> Idea: Shift the point set 2
[]

1

10/32

Not quite a solution

9
19
, g R} .
» Points nearby in RY =4 _
nearby in Z-order ol 110 11
ARG
> Idea: Shift the point set 4 U
2
[]
ol
*3

10/32

Not quite a solution

P

e 14
11
b 1T
» Points nearby in R? =4 ° ~ ®
nearby in Z-order ..? 9 10
g °
> Idea: Shift the point set 3. T

*4

10/32

Preliminaries: Shifting

Lemma [Chan '98]
Fori=0,...,d, let vy =(i/(d+1),...,i/(d +1)).

Let p,q € [0,1)¢ and T be a quadtree over [0,2)9.
There exists i € {0,...,d} and D € T:

1. p4+v,qg+v,eld
2. (d+1)||p — q| < sidelength(CJ) < 2(d + 1)||p — g

11/32

A correct solution

> Shift point set d + 1 times: Py, ..., Py

12/32

A correct solution

> Shift point set d + 1 times: Py, ..., Py

DS for F, DS for P, e e . DS for Py

12/32

A correct solution

> Shift point set d + 1 times: Py,..., Py

DS for F, DS for P, e e . DS for Py

= Oy(log n) update time

12/32

A correct solution

> Shift point set d + 1 times: Py,..., Py

DS for Fy DS for P, o0 c DS for Py

= Oy(log n) update time

» Claim: Oy4(1) approximation

12/32

o b

13/32

o b

sidelength(0J) < 2(d + 1)||r — b|

13/32

o b

sidelength(0J) < 2(d + 1)||r — b|

b _—

13/32

o b

sidelength(0J) < 2(d + 1)||r — b|

13/32

o b

sidelength(0J) < 2(d + 1)||r — b|

booeee W e T

| — ¥|| < diam(0) < V/d - sidelength(0) = O,4(1)||r — b||

13/32

(1 + ¢)-approximate bichromatic
closest pair

Reducing the approximation factor

» Assumee =2"F for Ee N

14/32

Reducing the approximation factor

» Assumee =2"F for Ee N

» l|dea: Pack many “e-quadtrees”
into a regular quadtree

14/32

Reducing the approximation factor

» Assumee =2"F for Ee N

» l|dea: Pack many “e-quadtrees”
into a regular quadtree

» e-quadtrees have 1/¢9 children

14/32

Reducing the approximation factor

» Assumee =2"F for Ee N

» l|dea: Pack many “e-quadtrees”
into a regular quadtree

» e-quadtrees have 1/¢9 children

14/32

Reducing the approximation factor

» Assumee =2"F for Ee N

» l|dea: Pack many “e-quadtrees”
into a regular quadtree

» e-quadtrees have 1/¢9 children

» “Partitions” a regular quadtree

into lg(1/e) e-quadtrees

14/32

Reducing the approximation factor

» Assumee =2"F for Ee N

» l|dea: Pack many “e-quadtrees”
into a regular quadtree

» e-quadtrees have 1/¢9 children

» “Partitions” a regular quadtree

into lg(1/e) e-quadtrees
» Call them T2,...,TF / \

14/32

O(1) problems

Extend Z-order to e-quadtrees by ordering 1/¢9 child cells

10/6|9/3 ¢
711]16]5 2 e
11]15|14] 4

2 112] 8113 SN

What Z-order should we pick?

celsd %

O(1) problems (cont.)

q

sidelength(J) < 2(d+ 1)||p — q||

16/32

O(1) problems (cont.)

q —
[

q

sidelength(J) < 2(d+ 1)||p — q||

16/32

O(1) problems (cont.)

0

q —
[

q

16/32

Ordering quadtree cells

Idea
Pick a set O of orderings of the 1/¢? cells such that:

For any [y, [y, there is an ordering o € O with [J; adjacent to [,

17/32

A necessary subproblem

Lemma [Alspach '08]

For n elements {0,...,n — 1}, there is a set O of [n/2] orderings of the
elements, such that, for all i,j € {0,...,n— 1}, there exist an ordering

o € O in which i and j are adjacent.

18/32

Ordering quadtree cells

Corollary

There is a set O(1/¢) of O(1/£9) orderings, such that for any Oy, [y,
there exists an order o € O(1/¢) where [J; and [, are adjacent in o.

19/32

What we have so far

» d + 1 shifted point sets

20/32

What we have so far

» d + 1 shifted point sets
» lg(1/e) e-quadtrees

20/32

What we have so far

» d + 1 shifted point sets
» lIg(1/e) e-quadtrees
» O(1/?) orderings

20/32

What we have so far

» d + 1 shifted point sets
» lg(1/e) e-quadtrees
» O(1/?) orderings
= 04((1/9)log(1/¢)) different orderings of P

20/32

What we have so far

v

d + 1 shifted point sets

v

lg(1/e) e-quadtrees
O(1/%) orderings
= 04((1/9)log(1/¢)) different orderings of P

Let IT denote these set of orderings

v

v

20/32

What we have so far

Main Theorem

For £ € (0,1), there is a set M of size O((1/e9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in ¢ are distance at most ¢||p — g|| from p or g.

21/32

What we have so far

Main Theorem

For £ € (0,1), there is a set M of size O((1/e9) log(1/¢)) such that
Vp,q € [0,1)?, there exists o € M with:

Points between p and q in ¢ are distance at most ¢||p — g|| from p or g.

Lemma

Let p,q € [0,1)¢ and o € M. Can decide if p <, g using Og(log(1/¢))
bitwise-logical operations.

21/32

The solution

» Maintain the 1D data structure for all orderings [l

22/32

The solution

» Maintain the 1D data structure for all orderings [l

> M| = O((1/¢%) log(1/e))

22/32

The solution

» Maintain the 1D data structure for all orderings [l

~ || = O((1/%) log(1/))

» Update time: O(|M] - log(n) - log(1/¢)) =
04((1/2%) log(n) log*(1/¢))

22/32

The solution

v

Maintain the 1D data structure for all orderings Il
M| = 0((1/2%) log(1/))

Update time: O(|M] - log(n) - log(1/¢)) =
04((1/2%) log(n) log*(1/¢))

Space: O(|M| - n) = O4((n/e9)log(1/¢))

v

v

v

22/32

The solution

» Maintain the 1D data structure for all orderings [l
> |N| = 0((1/¢7) log(1/¢))
» Update time: O(|M] - log(n) - log(1/¢)) =
04((1/2) log(n) log*(1/¢))
» Space: O(|N]-n) = O4((n/e%)log(1/e))
» Claim: Maintains r/, b’ with ||r" — b'|| < (1 +¢€)||r — b]|

22/32

Correctness

<

sidelength(d) < 2(d + 1)|r — b||

23/32

Correctness

=

sidelength(d) < 2(d + 1)|r — b||

23/32

Correctness

=

b

sidelength(d) < 2(d + 1)|r — b||

23/32

Correctness

=

b

oell

23/32

Correctness

3
[
=

ble-ofp

b

oell

23/32

A simple data structure for
dynamic (1 + ¢)-spanners

Definition
For a set n of P points in RY and t > 1, a t-spanner of P is a graph
G = (P, E) such that for all p,q € P,

lp— gl < diste(p, q) < tl|p— ql|.

24/32

» For each o € [, connect the n consecutive points with n — 1 edges

25/32

» For each o € [, connect the n consecutive points with n — 1 edges

» (n—1)|N] = Oy((n/c) log(1/c)) edges

25/32

» For each o € [, connect the n consecutive points with n — 1 edges
» (n—1)|N] = Oy((n/c) log(1/c)) edges
» Maximum degree Oy((1/c7)log(1/¢))

25/32

v

For each o € I1, connect the n consecutive points with n — 1 edges
(n—1)IM| = O4((n/=?) log(1/c)) edges

Maximum degree O4((1/e%)log(1/¢))

Update time Oy4((1/2%) log(n) log?(1/¢))

v

A\

v

25/32

v

For each o € I1, connect the n consecutive points with n — 1 edges
(n—1)IM| = O4((n/=?) log(1/c)) edges

Maximum degree O4((1/e%)log(1/¢))

Update time Oy4((1/2%) log(n) log?(1/¢))

Claim: G is a (1 + €)-spanner

v

A\

v

v

25/32

Je
. . Q[
» Prove by induction on length of P’ \p/q, cE
pairs: « -
dist(p.q) < (1+ &)~ gl N
AN /Dq
q\.X q/

sidelength(0J) < 2(d + 1)||p — ¢|
sidelength(OJ,) = ¢ - sidelength((J)

26/32

Je
» Prove by induction on length of AP '
p e E
o < N

pairs:

distc(p, a) < (1+2)llp— g \\\]
» G is a (1+ cyge)-spanner for \\ \ P

const. ¢y q\. -8y

sidelength(0J) < 2(d + 1)||p — ¢|
sidelength(OJ,) = ¢ - sidelength((J)

26/32

Je
» Prove by induction on length of AP '
p Pq|leE
o < N

pairs: .

distc(p, a) < (1+2)llp— g \\\]
» G is a (1+ cyge)-spanner for \\ \ P

const. ¢y qle-®y

- eeelsi e 7 @ sidelength(0J) < 2(d + 1)||p — ¢|

sidelength(OJ,) = ¢ - sidelength((J)

26/32

Static & dynamic
vertex-fault-tolerant spanners

Fault-tolerant spanners

Definition
For a set of n points P in RY and t > 1, a k-vertex-fault-tolerant
t-spanner of P is a graph G = (P, E) such that

1. G is a t-spanner, and
2. Forany P" C P, |P'| < k, G\ P is a t-spanner for P\ P'.

27/32

» For each o € I1 and each p € P, connect p to it's k + 1 predecessors
and successors

28/32

» For each o € I1 and each p € P, connect p to it's k + 1 predecessors
and successors

» O(kn|N]) = O4((kn/e?)log(1/c)) edges

28/32

» For each o € I1 and each p € P, connect p to it's k + 1 predecessors
and successors

» O(kn|N|) = O4((kn/c?)log(1/e)) edges
» Maximum degree Oy((k/e9)log(1/¢))

28/32

Any update changes O(k) edges in G

k=2

29/32

Any update changes O(k) edges in G

k=2

29/32

Any update changes O(k) edges in G

29/32

Any update changes O(k) edges in G

Update time Oy((log nlog(1/¢) + k) log(1/¢)/e9)

29/32

Sketch proof

» G is already a (1 + €)-spanner

30/32

Sketch proof

» G is already a (1 + €)-spanner
» Consider P C P, |P'| < k

30/32

Sketch proof

» G is already a (1 + €)-spanner
» Consider P C P, |P'| < k

30/32

Sketch proof

» G is already a (1 + €)-spanner
» Consider P C P, |P'| < k

» Let o € 1 with P’ removed @ ?5 ;
P

30/32

Sketch proof

» G is already a (1 + €)-spanner
» Consider P C P, |P'| < k

» Let o € 1 with P’ removed nm
L LLA

30/32

Sketch proof

G is already a (1 + ¢)-spanner
Consider PP C P, |P'| < k

Let o € M with P’ removed
» Consecutive points in P\ P’ remain m
P \ » N\

in G\ P’ (by construction)

v

v

v

30/32

Sketch proof

G is already a (1 + ¢)-spanner
Consider PP C P, |P'| < k

Let o € M with P’ removed m
» Consecutive points in P\ P’ remain n

_ tive p "\ P ’
in G\ P’ (by construction)

= G\ P’ is a (1+ &)-spanner for
P\ P’

v

v

v

30/32

Conclusion

Main Theorem

For £ € (0,1), there is a set M of size O((1/e%) log(1/¢)) such that
Vp, q € [0,1)7, there exists o € I with:

Points between p and ¢ in o are distance at most ¢||p — q|| from p or g.

31/32

Applications

1. Approximate bichromatic closest pair (improved update time to

O(log n))

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to
O(log n))

2. Dynamic spanners (simpler data structure)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to
O(log)
2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

32/32

Applications

1. Approximate bichromatic closest pair (improved update time to
0(log n))

2. Dynamic spanners (simpler data structure)

3. Static vertex-fault-tolerant spanners (simple data structure)

4. Dynamic vertex-fault-tolerant spanners (previous work?)

32/32

Applications

3.
4.

Approximate bichromatic closest pair (improved update time to
O(log n))

Dynamic spanners (simpler data structure)

Static vertex-fault-tolerant spanners (simple data structure)

Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1.

Approximate nearest neighbor (not new)

32/32

Applications

3.
4.

Approximate bichromatic closest pair (improved update time to
O(log n))

Dynamic spanners (simpler data structure)

Static vertex-fault-tolerant spanners (simple data structure)

Dynamic vertex-fault-tolerant spanners (previous work?)

Other applications:

1.
2.

Approximate nearest neighbor (not new)

Dynamic approximate MST (uses dynamic spanners)

32/32

	Warmup: Constant factor approximation for bichromatic closest pair
	Problem definition
	Preliminaries
	The solution

	(1 +)-approximate bichromatic closest pair
	Intuition
	The solution

	A simple data structure for dynamic (1+)-spanners
	Static & dynamic vertex-fault-tolerant spanners
	Conclusion

