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Low dimension proximity problems: d = O(1)

Nearest neighbor Closest pair problems Spanners/MST

Goal: Dynamic data structures which maintain/return a
(1+ ε)-approximation
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In this talk

I Quadtrees: Basic data structure in computational geometry
I Many orderings of points in Rd (Z-order)
I Two new tricks to the mix

=⇒ Simpler data structures for many proximity problems
(plus some new results)
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New technique: Locality-sensitive orderings
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Definition: Locality-Sensitive Orderings
Let ε ∈ (0, 1). A collection of orderings Π over [0, 1)d s.t. for all
p,q ∈ [0, 1)d, exists σ ∈ Π where:

∀p ≺σ z ≺σ q : min(‖z − p‖, ‖z − q‖) 6 ε‖p− q‖.
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New technique: Locality-sensitive orderings

Definition: Locality-Sensitive Orderings
Let ε ∈ (0, 1). A collection of orderings Π over [0, 1)d s.t. for all
p,q ∈ [0, 1)d, exists σ ∈ Π where:

∀p ≺σ z ≺σ q : min(‖z − p‖, ‖z − q‖) 6 ε‖p− q‖.

Theorem
There are locality-sensitive orderings of size O

(
(1/εd) log(1/ε)

)
.
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Main applications

I New: (1+ ε)-bichromatic closest pair

I Simpler: Dynamic (1+ ε)-spanners
I New: Dynamic k-vertex-fault-tolerant (1+ ε)-spanners
I ...
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Warmup: Constant factor
approximation for bichromatic
closest pair



Bichromatic closest pair

Problem (c-approximation)
Maintain a pair (r ′,b ′) s.t. ‖r ′ − b ′‖ 6 c ·min

(r,b)
‖r − b‖.
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Quadtrees
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Quadtrees: Z-order

DFS of a quadtree =⇒ ordering of points (Z-order)

10/41



Quadtrees: Z-order

DFS of a quadtree =⇒ ordering of points ( U-order)
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Ordering of points

Hope: points close together ≈ nearby in ordering
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Ordering of points

Hope: points close together ≈ nearby in ordering
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Computing the Z-order

I Let p = (x, y) ∈ [2w]× [2w]
I x = xwxw−1 . . . x1
I y = ywyw−1 . . . y1

I shuffle(p) = ywxwyw−1xw−1 . . . y1x1
I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma
shuffle(p) and shuffle(q) can be compared with O(1)
bitwise-and/xor operations.
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Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order
I Maintain consecutive
red/blue pairs with min-heap

I Updates change O(1)
consecutive pairs
=⇒ Update time O(log n)

p

q

⇓ Delete p

⇓ Insert q
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Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set
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Shifting

Lemma [Chan, 1998]
For i = 0, . . . ,d, vi = (i/(d+ 1), . . . , i/(d+ 1)).

For any p,q ∈ [0, 1)d, exists i ∈ {0, . . . ,d} and quadtree cell �:

1. p+ vi,q+ vi ∈ �

2. (d+ 1)‖p− q‖ < sidelength(�) 6 2(d+ 1)‖p− q‖.
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A correct solution

I Shift point set d+ 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time
I Claim: Od(1) approximation
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Correctness (cont.)

b

r
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Correctness (cont.)
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Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rb . . . . . .b′ r′

‖r′ − b′‖ ≤ diam(�) ≤
√
d · sidelength(�) = Od(1)‖r − b‖
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The challenge:
(1+ ε)-approximate bichromatic
closest pair



Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N

I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children
I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε
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O(1) problems

Extend Z-order to ε-quadtrees by ordering 1/εd child cells
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Which order to pick?
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O(1) problems
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O(1) problems

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

�p

�q

Iq Ip

21/41



Key idea II: Ordering quadtree cells

Problem

Find a family O of orderings of the 1/εd cells s.t.:

For any �1,�2, there is an ordering σ ∈ O with �1 adjacent to �2.
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A necessary subproblem

Lemma [Alspach, 2008]
For JnK = {1, . . . ,n}, there are dn/2e orderings O of JnK such that for
all i, j ∈ JnK, ∃σ ∈ O where i and j are adjacent in σ.

vi
vi vi vi

vi vi
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Ordering quadtree cells

Corollary

There is a set O(ε) of O(1/εd) orderings such that for any �1,�2,
there is an order σ ∈ O(ε) where �1 and �2 are adjacent.
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What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees

I Each quadtree has lg(1/ε) ε-quadtrees
I Each ε-quadtree has O(1/εd) orderings

=⇒ Od
(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings
I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.
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The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))
I Update time: O(|Π| · log(n) · log(1/ε)) = Od((1/εd) log(n) log2(1/ε))
I Space: O(|Π| · n) = Od((n/εd) log(1/ε))
I Claim: Maintains r ′,b ′ with ‖r ′ − b ′‖ 6 (1+ ε)‖r − b‖
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Correctness
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sidelength(�) ≤ 2(d+ 1)‖r − b‖

27/41



Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

27/41



Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

27/41



Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

Ir Ib

σ ∈ Π

27/41



Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

Ir Ib

σ ∈ Π

r

b

sidelength(�b) = ε · sidelength(�)

r′

b′

=⇒

27/41



The result

Our result
Can maintain the (1+ ε)-approximate bichromatic closest pair
dynamically with:

1. O(log n log2(1/ε)/εd) update time
2. O(n log(1/ε)/εd) space

28/41



The result

Main Theorem
For ε ∈ (0, 1), there is a set Π of size
O((1/εd) log(1/ε)) s.t. ∀p,q ∈ [0, 1)d,
∃σ ∈ Π with:

Points between p and q in σ are
distance at most ε‖p− q‖ from p or q.

q
p

⇓
σ
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A simple data structure for
dynamic (1+ ε)-spanners



Spanners

Definition

For a set n of P points in Rd and t > 1, a t-spanner of P is a graph
G = (P, E) such that for all p,q ∈ P,

‖p− q‖ 6 distG(p,q) 6 t‖p− q‖.

Problem
Maintain a (1+ ε)-spanner of P dynamically.
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Previous work & result

reference insertion time deletion time
[Roditty, 2012] O(log n) O(n1/3 logO(1) n)
[Gottlieb and Roditty, 2008a] O(log2 n) O(log3 n)
[Gottlieb and Roditty, 2008b] O(log n) O(log n)

Our result
Can dynamically maintain a (1+ ε)-spanner of P with:

1. O(n log(1/ε)/εd) edges
2. O(log(1/ε)/εd) maximum degree
3. O(log n log2(1/ε)/εd) update time
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Construction

I For each σ ∈ Π, add edges between consecutive points

I (n− 1)|Π| = Od((n/εd) log(1/ε)) edges
I Maximum degree 6 2|Π| = Od((1/εd) log(1/ε))
I Update time Od((1/εd) log(n) log2(1/ε))
I Claim: G is a (1+ ε)-spanner
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Proof idea

I Proof by induction on length
of pairs:
distG(p,q) 6 (1+ ε)‖p− q‖

I G is a (1+ cdε)-spanner for
const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E
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Static & dynamic
vertex-fault-tolerant spanners



Fault-tolerant spanners

Definition

For a set of n points P in Rd and t > 1, a k-vertex-fault-tolerant
t-spanner of P is a graph G = (P, E) such that

1. G is a t-spanner, and
2. For any P ′ ⊆ P, |P ′| 6 k, G \ P ′ is a t-spanner for P \ P ′.

Problem
For a static point set P, efficiently construct a “small” k-VFT
(1+ ε)-spanner.

34/41



Previous work & result

reference # edges degree running time
[Levcopoulos et al., 1998] 2O(k)n 2O(k) O(n log n+ 2O(k)n)

O(k2n) unbounded O(n log n+ k2n)
O(kn log n) unbounded O(kn log n)

[Lukovszki, 1999] O(kn) O(k2) O(n logd−1 n+ kn log log n)
[Czumaj and Zhao, 2004] O(kn) O(k) O(kn logd n+ k2n log k)
[Chan et al., 2015] O(k2n) O(k2) O(n log n+ k2n)
[Kapoor and Li, 2013] & O(kn) O(k) O(n log n+ kn)
[Solomon, 2014]

Our result
A k-VFT (1+ ε)-spanner of P with

1. O(kn log(1/ε)/εd) edges
2. O(k log(1/ε)/εd) maximum degree
3. O

(
(n log n log(1/ε) + kn) log(1/ε)/εd

)
construction time
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Construction

I For each σ ∈ Π and each p ∈ P, connect p to its k+ 1
predecessors and successors in σ

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges
I Maximum degree = O(k|Π|) = Od((k/εd) log(1/ε))

36/41



Construction

I For each σ ∈ Π and each p ∈ P, connect p to its k+ 1
predecessors and successors in σ

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges

I Maximum degree = O(k|Π|) = Od((k/εd) log(1/ε))

36/41



Construction

I For each σ ∈ Π and each p ∈ P, connect p to its k+ 1
predecessors and successors in σ

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges
I Maximum degree = O(k|Π|) = Od((k/εd) log(1/ε))

36/41



Sketch proof

I G is a (1+ ε)-spanner

I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41



Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k

I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41



Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k

I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P
P ′

37/41



Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P
P ′

37/41



Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41



Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41



Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41



Update time

Any update changes O(k) edges in G

p

k = 2

q

Update time Od((log n log(1/ε) + k)|Π|)
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Result

Our result
A k-VFT (1+ ε)-spanner of P with

1. O(kn log(1/ε)/εd) edges
2. O(k log(1/ε)/εd) maximum degree
3. O

(
(n log n log(1/ε) + kn) log(1/ε)/εd

)
construction time

New: Can also maintain dynamically with update time

O
(
(log n log(1/ε) + k) log(1/ε)/εd

)
.
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Conclusion



Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) s.t.
∀p,q ∈ [0, 1)d, ∃σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p
or q.

Remarks

I Extends to ‖ · ‖p norms

I “Replacement” for well-separated pair decomposition
I ≈ locality-sensitive hashing (smaller family of orders, weaker
guarantees)
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Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]
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