Locality-Sensitive Orderings \& Their Applications

Timothy Chan, Sariel Har-Peled, Mitchell Jones
August 2019
University of Illinois at Urbana-Champaign

Low dimension proximity problems: $d=O(1)$

Nearest neighbor

Closest pair problems

Spanners/MST

Goal: Dynamic data structures which maintain/return a $(1+\varepsilon)$-approximation

In this talk

- Quadtrees: Basic data structure in computational geometry
- Many orderings of points in \mathbb{R}^{d} (z-order)
- Two new tricks to the mix
\Longrightarrow Simpler data structures for many proximity problems (plus some new results)

New technique: Locality-sensitive orderings

σ

New technique: Locality-sensitive orderings

New technique: Locality-sensitive orderings

Definition: Locality-Sensitive Orderings
Let $\varepsilon \in(0,1)$. A collection of orderings Π over $[0,1)^{d}$ s.t. for all $p, q \in[0,1)^{d}$, exists $\sigma \in \Pi$ where:

$$
\forall p \prec_{\sigma} z \prec_{\sigma} q: \min (\|z-p\|,\|z-q\|) \leqslant \varepsilon\|p-q\| .
$$

New technique: Locality-sensitive orderings

Definition: Locality-Sensitive Orderings

Let $\varepsilon \in(0,1)$. A collection of orderings Π over $[0,1)^{d}$ s.t. for all $p, q \in[0,1)^{d}$, exists $\sigma \in \Pi$ where:

$$
\forall p \prec_{\sigma} z \prec_{\sigma} q: \min (\|z-p\|,\|z-q\|) \leqslant \varepsilon\|p-q\| .
$$

Theorem
There are locality-sensitive orderings of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$.

Main applications

- New: $(1+\varepsilon)$-bichromatic closest pair

Main applications

- New: $(1+\varepsilon)$-bichromatic closest pair
- Simpler: Dynamic $(1+\varepsilon)$-spanners

Main applications

- New: $(1+\varepsilon)$-bichromatic closest pair
- Simpler: Dynamic $(1+\varepsilon)$-spanners
- New: Dynamic k-vertex-fault-tolerant $(1+\varepsilon)$-spanners

Main applications

- New: $(1+\varepsilon)$-bichromatic closest pair
- Simpler: Dynamic $(1+\varepsilon)$-spanners
- New: Dynamic k-vertex-fault-tolerant $(1+\varepsilon)$-spanners

Warmup: Constant factor approximation for bichromatic closest pair

Bichromatic closest pair

			0				
0						0	
			0	0	0	0	
	0						
		0			0		
	0						
					0		

Bichromatic closest pair

			0				
0						0	
			0	0	0	0	
	0						
		0			0		
	0						
					0		

Problem (c-approximation)
Maintain a pair $\left(r^{\prime}, b^{\prime}\right)$ s.t. $\left\|r^{\prime}-b^{\prime}\right\| \leqslant c \cdot \min _{(r, b)}\|r-b\|$.

Quadtrees

0

Quadtrees

Quadtrees

Quadtrees

Quadtrees

Quadtrees: z-order

DFS of a quadtree \Longrightarrow ordering of points (z-order)

Quadtrees: z-order

DFS of a quadtree \Longrightarrow ordering of points (\triangleright-order)

Ordering of points

Hope: points close together \approx nearby in ordering

Ordering of points

Hope: points close together \approx nearby in ordering

Computing the z-order

- Let $p=(x, y) \in\left[2^{w}\right] \times\left[2^{w}\right]$
- $x=x_{w} x_{w-1} \ldots x_{1}$
- $y=y_{w} y_{w-1} \ldots y_{1}$

Computing the z-order

- Let $p=(x, y) \in\left[2^{w}\right] \times\left[2^{w}\right]$
- $x=x_{w} x_{w-1} \ldots x_{1}$
- $y=y_{w} y_{w-1} \ldots y_{1}$
- $\operatorname{shuffle}(p)=y_{w} x_{w} y_{w-1} x_{w-1} \ldots y_{1} x_{1}$
- Position of p in z-order $=\operatorname{shuffle(~} p$)

Computing the z-order

- Let $p=(x, y) \in\left[2^{w}\right] \times\left[2^{w}\right]$
- $x=x_{w} x_{w-1} \ldots x_{1}$
- $y=y_{w} y_{w-1} \ldots y_{1}$
- $\operatorname{shuffle}(p)=y_{w} x_{w} y_{w-1} x_{w-1} \ldots y_{1} x_{1}$
- Position of p in z-order $=\operatorname{shuffle(~} p$)

Lemma

shuffle (p) and $\operatorname{shuffle(~} q$) can be compared with $O(1)$ bitwise-and/xor operations.

Solving the problem in 1D: A solution?

- Map the point set to 1D

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order
- Maintain consecutive red/blue pairs with min-heap

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order
- Maintain consecutive red/blue pairs with min-heap
- Updates change O(1) consecutive pairs

\Downarrow Delete p

\Downarrow Insert q

Solving the problem in 1D: A solution?

- Map the point set to 1D
- Maintain sorted order
- Maintain consecutive red/blue pairs with min-heap
- Updates change O (1) consecutive pairs
\Longrightarrow Update time $O(\log n)$

\Downarrow Delete p

\Downarrow Insert q

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Not quite a solution

- Points nearby in $\mathbb{R}^{d} \nRightarrow$ nearby in z-order
- Idea: Shift the point set

Shifting

Lemma [Chan, 1998]
For $i=0, \ldots, d, v_{i}=(i /(d+1), \ldots, i /(d+1))$.
For any $p, q \in[0,1)^{d}$, exists $i \in\{0, \ldots, d\}$ and quadtree cell \square :

1. $p+v_{i}, q+v_{i} \in \square$
2. $(d+1)\|p-q\|<$ sidelength $(\square) \leqslant 2(d+1)\|p-q\|$.

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

$\Longrightarrow O_{d}(\log n)$ update time

A correct solution

- Shift point set $d+1$ times: P_{0}, \ldots, P_{d}

$\Longrightarrow O_{d}(\log n)$ update time
- Claim: $O_{d}(1)$ approximation

Correctness (cont.)

Correctness (cont.)

sidelength $(\square) \leq 2(d+1)\|r-b\|$

Correctness (cont.)

Correctness (cont.)

Correctness (cont.)

The challenge:
($1+\varepsilon$)-approximate bichromatic closest pair

Key idea I: Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$

Key idea I: Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
" ε-quadtrees" into a regular quadtree

Key idea I: Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
" ε-quadtrees" into a regular quadtree
- ε-quadtrees have $1 / \varepsilon^{d}$ children

Key idea I: Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$

Key idea I: Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$

Key idea I: Reducing the approximation factor

- Assume $\varepsilon=2^{-E}$ for $E \in \mathbb{N}$

- Call them $\mathfrak{T}_{\varepsilon}^{1}, \ldots, \mathcal{T}_{\varepsilon}^{E}$

O(1) problems

Extend z-order to ε-quadtrees by ordering $1 / \varepsilon^{d}$ child cells

10	6	9	3
7	1	16	5
11	15	14	4
2	12	8	13

Which order to pick?

$O(1)$ problems

sidelength $(\square) \leq 2(d+1)\|p-q\|$

$O(1)$ problems

sidelength $(\square) \leq 2(d+1)\|p-q\|$

O (1) problems

Key idea II: Ordering quadtree cells

Problem

Find a family \mathfrak{O} of orderings of the $1 / \varepsilon^{d}$ cells s.t.:
For any \square_{1}, \square_{2}, there is an ordering $\sigma \in \mathfrak{O}$ with \square_{1} adjacent to \square_{2}.

A necessary subproblem

Lemma [Alspach, 2008]
For $\llbracket n \rrbracket=\{1, \ldots, n\}$, there are $\lceil n / 2\rceil$ orderings \mathfrak{O} of $\llbracket n \rrbracket$ such that for all $i, j \in \llbracket n \rrbracket, \exists \sigma \in \mathfrak{O}$ where i and j are adjacent in σ.

Ordering quadtree cells

Corollary

There is a set $\mathfrak{O}(\varepsilon)$ of $O\left(1 / \varepsilon^{d}\right)$ orderings such that for any \square_{1}, \square_{2}, there is an order $\sigma \in \mathfrak{O}(\varepsilon)$ where \square_{1} and \square_{2} are adjacent.

What we have so far

- $d+1$ shifted point sets $\equiv d+1$ quadtrees

What we have so far

- $d+1$ shifted point sets $\equiv d+1$ quadtrees
- Each quadtree has $\lg (1 / \varepsilon) \varepsilon$-quadtrees

What we have so far

- $d+1$ shifted point sets $\equiv d+1$ quadtrees
- Each quadtree has $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- Each ε-quadtree has $O\left(1 / \varepsilon^{d}\right)$ orderings

What we have so far

- $d+1$ shifted point sets $\equiv d+1$ quadtrees
- Each quadtree has $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- Each ε-quadtree has $O\left(1 / \varepsilon^{d}\right)$ orderings
$\Longrightarrow O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ different orderings of P

What we have so far

- $d+1$ shifted point sets $\equiv d+1$ quadtrees
- Each quadtree has $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- Each ε-quadtree has $O\left(1 / \varepsilon^{d}\right)$ orderings
$\Longrightarrow O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ different orderings of P
- Π is this family of locality-sensitive orderings

What we have so far

- $d+1$ shifted point sets $\equiv d+1$ quadtrees
- Each quadtree has $\lg (1 / \varepsilon) \varepsilon$-quadtrees
- Each ε-quadtree has $O\left(1 / \varepsilon^{d}\right)$ orderings
$\Longrightarrow O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ different orderings of P
- Π is this family of locality-sensitive orderings
- For $\sigma \in \Pi$, can decide $p \prec_{\sigma} q$ with $O(\log (1 / \varepsilon))$ bitwise-logical operations.

The solution

- Maintain the 1D data structure for all orderings Π

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time: $O(|\Pi| \cdot \log (n) \cdot \log (1 / \varepsilon))=O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time: $O(|\Pi| \cdot \log (n) \cdot \log (1 / \varepsilon))=O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$
- Space: $O(|\Pi| \cdot n)=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

The solution

- Maintain the 1D data structure for all orderings Π
- $|\Pi|=O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time: $O(|\Pi| \cdot \log (n) \cdot \log (1 / \varepsilon))=O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$
- Space: $O(|\Pi| \cdot n)=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Claim: Maintains r^{\prime}, b^{\prime} with $\left\|r^{\prime}-b^{\prime}\right\| \leqslant(1+\varepsilon)\|r-b\|$

Correctness

sidelength $(\square) \leq 2(d+1)\|r-b\|$

Correctness

sidelength $(\square) \leq 2(d+1)\|r-b\|$

Correctness

sidelength $(\square) \leq 2(d+1)\|r-b\|$

Correctness

Correctness

The result

Our result

Can maintain the $(1+\varepsilon)$-approximate bichromatic closest pair dynamically with:

1. $O\left(\log n \log ^{2}(1 / \varepsilon) / \varepsilon^{d}\right)$ update time
2. $O\left(n \log (1 / \varepsilon) / \varepsilon^{d}\right)$ space

The result

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ s.t. $\forall p, q \in[0,1)^{d}$, $\exists \sigma \in \Pi$ with:

Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

A simple data structure for dynamic $(1+\varepsilon)$-spanners

Spanners

Definition

For a set n of P points in \mathbb{R}^{d} and $t \geqslant 1$, a t-spanner of P is a graph $G=(P, E)$ such that for all $p, q \in P$,

$$
\|p-q\| \leqslant \operatorname{dist}_{G}(p, q) \leqslant t\|p-q\|
$$

Problem

Maintain a $(1+\varepsilon)$-spanner of P dynamically.

Previous work \& result

reference	insertion time	deletion time
[Roditty, 2012]	$O(\log n)$	$O\left(n^{1 / 3} \log ^{O(1)} n\right)$
[Gottlieb and Roditty, 2008a]	$O\left(\log ^{2} n\right)$	$O\left(\log ^{3} n\right)$
[Gottlieb and Roditty, 2008b]	$O(\log n)$	$O(\log n)$

Our result

Can dynamically maintain a $(1+\varepsilon)$-spanner of P with:

1. $O\left(n \log (1 / \varepsilon) / \varepsilon^{d}\right)$ edges
2. $O\left(\log (1 / \varepsilon) / \varepsilon^{d}\right)$ maximum degree
3. $O\left(\log n \log ^{2}(1 / \varepsilon) / \varepsilon^{d}\right)$ update time

Construction

- For each $\sigma \in \Pi$, add edges between consecutive points

Construction

- For each $\sigma \in \Pi$, add edges between consecutive points - $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges

Construction

- For each $\sigma \in \Pi$, add edges between consecutive points - $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $\leqslant 2|\Pi|=O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

Construction

- For each $\sigma \in \Pi$, add edges between consecutive points
- $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $\leqslant 2|\Pi|=O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$

Construction

- For each $\sigma \in \Pi$, add edges between consecutive points
- $(n-1)|\Pi|=O_{d}\left(\left(n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $\leqslant 2|\Pi|=O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$
- Update time $O_{d}\left(\left(1 / \varepsilon^{d}\right) \log (n) \log ^{2}(1 / \varepsilon)\right)$
- Claim: G is a $(1+\varepsilon)$-spanner

Proof idea

- Proof by induction on length of pairs:
$\operatorname{dist}_{G}(p, q) \leqslant(1+\varepsilon)\|p-q\|$

Proof idea

- Proof by induction on length of pairs:
$\operatorname{dist}_{G}(p, q) \leqslant(1+\varepsilon)\|p-q\|$
- G is a $\left(1+c_{d} \varepsilon\right)$-spanner for const. c_{d}

Proof idea

- Proof by induction on length of pairs:
$\operatorname{dist}_{G}(p, q) \leqslant(1+\varepsilon)\|p-q\|$
- G is a $\left(1+c_{d} \varepsilon\right)$-spanner for const. c_{d}
- Readjust ε by c_{d}

sidelength $(\square) \leq 2(d+1)\|p-q\|$
sidelength $\left(\square_{q}\right)=\varepsilon \cdot$ sidelength (\square)

Static \& dynamic

 vertex-fault-tolerant spanners
Fault-tolerant spanners

Definition

For a set of n points P in \mathbb{R}^{d} and $t \geqslant 1$, a k-vertex-fault-tolerant t-spanner of P is a graph $G=(P, E)$ such that

1. G is a t-spanner, and
2. For any $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k, G \backslash P^{\prime}$ is a t-spanner for $P \backslash P^{\prime}$.

Problem

For a static point set P, efficiently construct a "small" k-VFT
$(1+\varepsilon)$-spanner.

Previous work \& result

reference	\# edges	degree	running time
[Levcopoulos et al., 1998]	$2^{O(k)} n$	$2^{O(k)}$	$O\left(n \log n+2^{O(k)} n\right)$
	$O\left(k^{2} n\right)$	unbounded	$O\left(n \log n+k^{2} n\right)$
	$O(k n \log n)$	unbounded	$O(k n \log n)$
[Lukovszki, 1999]	$O(k n)$	$O\left(k^{2}\right)$	$O(n \log d-1 n+k n \log \log n)$
[Czumaj and Zhao, 2004]	$O(k n)$	$O(k)$	$O\left(k n \log ^{d} n+k^{2} n \log k\right)$
[Chan et al., 2015]	$O\left(k^{2} n\right)$	$O\left(k^{2}\right)$	$O\left(n \log n+k^{2} n\right)$
[Kapoor and Li, 2013] \&	$O(k n)$	$O(k)$	$O(n \log n+k n)$
[Solomon, 2014]			

Our result

A k-VFT $(1+\varepsilon)$-spanner of P with

1. $O\left(k n \log (1 / \varepsilon) / \varepsilon^{d}\right)$ edges
2. $O\left(k \log (1 / \varepsilon) / \varepsilon^{d}\right)$ maximum degree
3. $O\left((n \log n \log (1 / \varepsilon)+k n) \log (1 / \varepsilon) / \varepsilon^{d}\right)$ construction time

Construction

- For each $\sigma \in \Pi$ and each $p \in P$, connect p to its $k+1$ predecessors and successors in σ

Construction

- For each $\sigma \in \Pi$ and each $p \in P$, connect p to its $k+1$ predecessors and successors in σ
- $O(k n|\Pi|)=O_{d}\left(\left(k n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges

Construction

- For each $\sigma \in \Pi$ and each $p \in P$, connect p to its $k+1$ predecessors and successors in σ
- $O(k n|\Pi|)=O_{d}\left(\left(k n / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ edges
- Maximum degree $=O(k|\Pi|)=O_{d}\left(\left(k / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$

Sketch proof

- G is a $(1+\varepsilon)$-spanner

$$
k=2
$$

Sketch proof

- G is a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k$

$$
k=2
$$

Sketch proof

- G is a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k$

$$
k=2
$$

Sketch proof

- G is a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k$
- Let $\sigma \in \Pi$ with P^{\prime} removed

$$
k=2
$$

Sketch proof

- G is a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k$
- Let $\sigma \in \Pi$ with P^{\prime} removed

$$
k=2
$$

Sketch proof

- G is a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k$
- Let $\sigma \in \Pi$ with P^{\prime} removed
- Consecutive points in $P \backslash P^{\prime}$ remain in $G \backslash P^{\prime}$ (by construction)

$$
k=2
$$

Sketch proof

- G is a $(1+\varepsilon)$-spanner
- Consider $P^{\prime} \subseteq P,\left|P^{\prime}\right| \leqslant k$
- Let $\sigma \in \Pi$ with P^{\prime} removed
- Consecutive points in $P \backslash P^{\prime}$

$$
k=2
$$

 remain in $G \backslash P^{\prime}$ (by construction)
$\Longrightarrow G \backslash P^{\prime}$ is a $(1+\varepsilon)$-spanner for $P \backslash P^{\prime}$

Update time

Any update changes $O(k)$ edges in G

$$
k=2
$$

Update time

Any update changes $O(k)$ edges in G

$$
k=2
$$

Update time

Any update changes $O(k)$ edges in G

Update time

Any update changes $O(k)$ edges in G

Update time $O_{d}((\log n \log (1 / \varepsilon)+k)|\Pi|)$

Result

Our result

A k-VFT $(1+\varepsilon)$-spanner of P with

1. $O\left(k n \log (1 / \varepsilon) / \varepsilon^{d}\right)$ edges
2. $O\left(k \log (1 / \varepsilon) / \varepsilon^{d}\right)$ maximum degree
3. $O\left((n \log n \log (1 / \varepsilon)+k n) \log (1 / \varepsilon) / \varepsilon^{d}\right)$ construction time

New: Can also maintain dynamically with update time

$$
O\left((\log n \log (1 / \varepsilon)+k) \log (1 / \varepsilon) / \varepsilon^{d}\right)
$$

Conclusion

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ s.t. $\forall p, q \in[0,1)^{d}, \exists \sigma \in \Pi$ with:

Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Remarks

- Extends to $\|\cdot\|_{p}$ norms

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ s.t. $\forall p, q \in[0,1)^{d}, \exists \sigma \in \Pi$ with:

Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Remarks

- Extends to $\|\cdot\|_{p}$ norms
- "Replacement" for well-separated pair decomposition

Main Theorem

Main Theorem

For $\varepsilon \in(0,1)$, there is a set Π of size $O\left(\left(1 / \varepsilon^{d}\right) \log (1 / \varepsilon)\right)$ s.t. $\forall p, q \in[0,1)^{d}, \exists \sigma \in \Pi$ with:

Points between p and q in σ are distance at most $\varepsilon\|p-q\|$ from p or q.

Remarks

- Extends to $\|\cdot\|_{p}$ norms
- "Replacement" for well-separated pair decomposition
- \approx locality-sensitive hashing (smaller family of orders, weaker guarantees)

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$
2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$
2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$
2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
4. Dynamic vertex-fault-tolerant spanners: New

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$
2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
4. Dynamic vertex-fault-tolerant spanners: New
5. Approximate nearest neighbor: Not new

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$
2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
4. Dynamic vertex-fault-tolerant spanners: New
5. Approximate nearest neighbor: Not new
6. Dynamic approximate MST: Follows by dynamic spanners

Applications

1. Approximate bichromatic closest pair: Improved update time $\approx O\left(\log ^{3} n\right)$ [Eppstein, 1995] $\rightarrow O(\log n)$
2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
4. Dynamic vertex-fault-tolerant spanners: New
5. Approximate nearest neighbor: Not new
6. Dynamic approximate MST: Follows by dynamic spanners
7. Static robust $(1+\varepsilon)$-spanners: See [Buchin et al., 2018]

References i

Timothy M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom., 20(3): 359-373, 1998.
Brian Alspach. The wonderful Walecki construction. Bull. Inst. Combin. Appl., 52: 7-20, 2008. ISSN: 1183-1278.
Liam Roditty. Fully dynamic geometric spanners. Algorithmica, 62(3-4): 1073-1087, 2012.
Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geometric spanners and geometric routing. Proc. 19th ACM-SIAM Sympos. Discrete Alg. (SODA), 591-600, 2008.
(Ree-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces. Proc. 16th Annu. Euro. Sympos. Alg. (ESA), 478-489, 2008.

References ii

Christos Levcopoulos，Giri Narasimhan，and Michiel H．M．Smid． Efficient algorithms for constructing fault－tolerant geometric spanners．Proc．30th ACM Sympos．Theory Comput．（STOC），186－195， 1998.

Tamás Lukovszki．New results of fault tolerant geometric spanners． Proc．6th Workshop Alg．Data Struct．（WADS），vol．1663．193－204， 1999.
圊 Artur Czumaj and Hairong Zhao．Fault－tolerant geometric spanners． Discrete Comput．Geom．，32（2）：207－230， 2004.
T．－H．Hubert Chan，Mingfei Li，Li Ning，and Shay Solomon．New doubling spanners：Better and simpler．SIAM J．Comput．，44（1）：37－53， 2015.

囯
Sanjiv Kapoor and Xiang－Yang Li．Efficient construction of spanners in d－dimensions．CoRR，abs／1303．7217， 2013.

References iii

Shay Solomon. From hierarchical partitions to hierarchical covers: Optimal fault-tolerant spanners for doubling metrics. Proc. 46th ACM Sympos. Theory Comput. (STOC), 363-372, 2014.

David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions. Discrete Comput. Geom., 13: 111-122, 1995.

Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A spanner for the day after. CoRR, abs/1811.06898, 2018. arXiv: 1811.06898.

