Locality-Sensitive Orderings & Their Applications

Timothy Chan, Sariel Har-Peled, <u>Mitchell Jones</u> August 2019

University of Illinois at Urbana-Champaign

Low dimension proximity problems: d = O(1)

Nearest neighbor

Closest pair problems

Spanners/MST

Goal: Dynamic data structures which maintain/return a $(1 + \varepsilon)$ -approximation

- Quadtrees: Basic data structure in computational geometry
- Many orderings of points in \mathbb{R}^d (\mathbb{Z} -order)
- Two new tricks to the mix

 \implies Simpler data structures for many proximity problems (plus some new results)

New technique: Locality-sensitive orderings

New technique: Locality-sensitive orderings

New technique: Locality-sensitive orderings

Definition: Locality-Sensitive Orderings

Let $\varepsilon \in (0, 1)$. A collection of orderings Π over $[0, 1)^d$ s.t. for all $p, q \in [0, 1)^d$, exists $\sigma \in \Pi$ where:

$$\forall p \prec_{\sigma} z \prec_{\sigma} q : \min(\|z - p\|, \|z - q\|) \leq \varepsilon \|p - q\|.$$

Definition: Locality-Sensitive Orderings

Let $\varepsilon \in (0, 1)$. A collection of orderings Π over $[0, 1)^d$ s.t. for all $p, q \in [0, 1)^d$, exists $\sigma \in \Pi$ where:

$$\forall p \prec_{\sigma} z \prec_{\sigma} q : \min(\|z - p\|, \|z - q\|) \leq \varepsilon \|p - q\|.$$

Theorem

There are locality-sensitive orderings of size $O((1/\varepsilon^d) \log(1/\varepsilon))$.

• New: $(1 + \varepsilon)$ -bichromatic closest pair

- New: $(1 + \epsilon)$ -bichromatic closest pair
- Simpler: Dynamic $(1 + \epsilon)$ -spanners

- New: $(1 + \varepsilon)$ -bichromatic closest pair
- Simpler: Dynamic $(1 + \varepsilon)$ -spanners
- New: Dynamic *k*-vertex-fault-tolerant $(1 + \varepsilon)$ -spanners

- New: $(1 + \varepsilon)$ -bichromatic closest pair
- Simpler: Dynamic $(1 + \varepsilon)$ -spanners
- New: Dynamic *k*-vertex-fault-tolerant $(1 + \varepsilon)$ -spanners

▶ ...

Warmup: Constant factor approximation for bichromatic closest pair

Bichromatic closest pair

Bichromatic closest pair

Problem (*c***-approximation)**

Maintain a pair
$$(r', b')$$
 s.t. $||r' - b'|| \leq c \cdot \min_{(r,b)} ||r - b||$.

DFS of a quadtree \implies ordering of points (2-order)

Hope: points close together $\,\approx\,$ nearby in ordering

Hope: points close together $\,\approx\,$ nearby in ordering

Computing the $\ensuremath{\mathbb{Z}}\xspace$ -order

- ▶ Let p = (x, y) ∈ [2^w] × [2^w]
- $X = X_W X_{W-1} \dots X_1$
- $y = y_w y_{w-1} \dots y_1$

Computing the $\ensuremath{\mathbb{Z}}\xspace$ -order

- ▶ Let p = (x, y) ∈ [2^w] × [2^w]
- $\bullet \ x = x_w x_{w-1} \dots x_1$
- $y = y_w y_{w-1} \dots y_1$
- shuffle(p) = $y_w x_w y_{w-1} x_{w-1} \dots y_1 x_1$
- ► Position of *p* in *Z*-order = shuffle(*p*)

Computing the $\ensuremath{\mathbb{Z}}\xspace$ -order

- ▶ Let p = (x, y) ∈ [2^w] × [2^w]
- $\bullet \ X = X_W X_{W-1} \dots X_1$
- $y = y_w y_{w-1} \dots y_1$
- shuffle(p) = $y_w x_w y_{w-1} x_{w-1} \dots y_1 x_1$
- ▶ Position of *p* in *Z*-order = shuffle(*p*)

Lemma

shuffle(p) and shuffle(q) can be compared with O(1) bitwise-and/xor operations.

Map the point set to 1D

- Map the point set to 1D
- Maintain sorted order

- Map the point set to 1D
- Maintain sorted order
- Maintain consecutive red/blue pairs with min-heap

- Map the point set to 1D
- Maintain sorted order
- Maintain consecutive red/blue pairs with min-heap
- Updates change O(1) consecutive pairs

- Map the point set to 1D
- Maintain sorted order
- Maintain consecutive red/blue pairs with min-heap
- Updates change O(1) consecutive pairs
 - \implies Update time $O(\log n)$

Not quite a solution

• Points nearby in $\mathbb{R}^d \implies$ nearby in \mathcal{Z} -order

- ► Points nearby in $\mathbb{R}^d \implies$ nearby in \mathfrak{Z} -order
- Idea: Shift the point set

- ► Points nearby in $\mathbb{R}^d \implies$ nearby in \mathfrak{Z} -order
- Idea: Shift the point set

- ► Points nearby in $\mathbb{R}^d \implies$ nearby in \mathfrak{Z} -order
- Idea: Shift the point set

- ► Points nearby in $\mathbb{R}^d \implies$ nearby in \mathfrak{Z} -order
- Idea: Shift the point set

Lemma [Chan, 1998]

For i = 0, ..., d, $v_i = (i/(d+1), ..., i/(d+1))$.

For any $p, q \in [0, 1)^d$, exists $i \in \{0, ..., d\}$ and quadtree cell \Box :

1.
$$p + v_i, q + v_i \in \Box$$

2. $(d+1)||p-q|| < sidelength(\Box) \le 2(d+1)||p-q||$.

 $\implies O_d(\log n)$ update time

 $\implies O_d(\log n)$ update time

• Claim: $O_d(1)$ approximation

 $\mathsf{sidelength}(\Box) \leq 2(d+1)\|r-b\|$

The challenge: $(1 + \varepsilon)$ -approximate bichromatic closest pair

• Assume $\varepsilon = 2^{-E}$ for $E \in \mathbb{N}$

- Assume $\varepsilon = 2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
 "ε-quadtrees" into a regular
 quadtree

- Assume $\varepsilon = 2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
 "ε-quadtrees" into a regular
 quadtree
- ε-quadtrees have 1/ε^d
 children

- Assume $\varepsilon = 2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
 "ε-quadtrees" into a regular quadtree
- ε-quadtrees have 1/ε^d
 children

- Assume $\varepsilon = 2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
 "ε-quadtrees" into a regular quadtree
- ε-quadtrees have 1/ε^d
 children
- Can partition a regular quadtree into lg(1/ε) ε-quadtrees

- Assume $\varepsilon = 2^{-E}$ for $E \in \mathbb{N}$
- Idea: Pack many
 "ε-quadtrees" into a regular quadtree
- ε-quadtrees have 1/ε^d
 children
- Can partition a regular quadtree into lg(1/ε) ε-quadtrees
- Call them $\mathcal{T}^1_{\varepsilon}, \ldots, \mathcal{T}^E_{\varepsilon}$

Extend \mathfrak{Z} -order to ε -quadtrees by ordering $1/\varepsilon^d$ child cells

Which order to pick?

O(1) problems

 $\mathsf{sidelength}(\Box) \leq 2(d+1) \|p-q\|$

O(1) problems

 $\mathsf{sidelength}(\Box) \leq 2(d+1) \|p-q\|$

O(1) problems

Problem

Find a family \mathfrak{O} of orderings of the $1/\varepsilon^d$ cells s.t.: For any \Box_1, \Box_2 , there is an ordering $\sigma \in \mathfrak{O}$ with \Box_1 adjacent to \Box_2 .

Lemma [Alspach, 2008]

For $[n] = \{1, ..., n\}$, there are $\lceil n/2 \rceil$ orderings \mathcal{D} of [n] such that for all $i, j \in [n]$, $\exists \sigma \in \mathcal{D}$ where *i* and *j* are adjacent in σ .

Corollary

There is a set $\mathfrak{O}(\varepsilon)$ of $O(1/\varepsilon^d)$ orderings such that for any \Box_1, \Box_2 , there is an order $\sigma \in \mathfrak{O}(\varepsilon)$ where \Box_1 and \Box_2 are adjacent.

• d + 1 shifted point sets $\equiv d + 1$ quadtrees

- d + 1 shifted point sets $\equiv d + 1$ quadtrees
- Each quadtree has $lg(1/\epsilon) \epsilon$ -quadtrees

- d + 1 shifted point sets $\equiv d + 1$ quadtrees
- Each quadtree has $lg(1/\epsilon) \epsilon$ -quadtrees
- Each ε -quadtree has $O(1/\varepsilon^d)$ orderings

- d + 1 shifted point sets $\equiv d + 1$ quadtrees
- Each quadtree has $lg(1/\epsilon) \epsilon$ -quadtrees
- Each ε -quadtree has $O(1/\varepsilon^d)$ orderings

 $\implies O_d((1/\epsilon^d)\log(1/\epsilon))$ different orderings of P

- d + 1 shifted point sets $\equiv d + 1$ quadtrees
- Each quadtree has $lg(1/\epsilon) \epsilon$ -quadtrees
- Each ε -quadtree has $O(1/\varepsilon^d)$ orderings $\implies O_d((1/\varepsilon^d)\log(1/\varepsilon))$ different orderings of P
- Π is this family of locality-sensitive orderings

- d + 1 shifted point sets $\equiv d + 1$ quadtrees
- Each quadtree has $lg(1/\epsilon) \epsilon$ -quadtrees
- Each ε -quadtree has $O(1/\varepsilon^d)$ orderings $\implies O_d((1/\varepsilon^d)\log(1/\varepsilon))$ different orderings of P
- Π is this family of locality-sensitive orderings
- ► For $\sigma \in \Pi$, can decide $p \prec_{\sigma} q$ with $O(\log(1/\epsilon))$ bitwise-logical operations.

Maintain the 1D data structure for all orderings Π

- ► Maintain the 1D data structure for all orderings Π
- $|\Pi| = O((1/\varepsilon^d) \log(1/\varepsilon))$

- ► Maintain the 1D data structure for all orderings Π
- $|\Pi| = O((1/\varepsilon^d) \log(1/\varepsilon))$
- Update time: $O(|\Pi| \cdot \log(n) \cdot \log(1/\epsilon)) = O_d((1/\epsilon^d) \log(n) \log^2(1/\epsilon))$

- ► Maintain the 1D data structure for all orderings Π
- $|\Pi| = O((1/\varepsilon^d) \log(1/\varepsilon))$
- Update time: $O(|\Pi| \cdot \log(n) \cdot \log(1/\epsilon)) = O_d((1/\epsilon^d) \log(n) \log^2(1/\epsilon))$
- Space: $O(|\Pi| \cdot n) = O_d((n/\varepsilon^d) \log(1/\varepsilon))$

- ► Maintain the 1D data structure for all orderings Π
- $|\Pi| = O((1/\varepsilon^d) \log(1/\varepsilon))$
- Update time: $O(|\Pi| \cdot \log(n) \cdot \log(1/\epsilon)) = O_d((1/\epsilon^d) \log(n) \log^2(1/\epsilon))$
- Space: $O(|\Pi| \cdot n) = O_d((n/\varepsilon^d) \log(1/\varepsilon))$
- ► Claim: Maintains r', b' with $||r' b'|| \leq (1 + \varepsilon)||r b||$

 $\mathsf{sidelength}(\Box) \leq 2(d+1) \|r-b\|$

 $\mathsf{sidelength}(\Box) \leq 2(d+1) \|r-b\|$

 $\mathsf{sidelength}(\Box) \leq 2(d+1) \|r-b\|$

Our result

Can maintain the $(1+\epsilon)\text{-approximate bichromatic closest pair dynamically with:}$

- 1. $O(\log n \log^2(1/\epsilon)/\epsilon^d)$ update time
- **2.** $O(n \log(1/\epsilon)/\epsilon^d)$ space

Main Theorem

For $\varepsilon \in (0, 1)$, there is a set Π of size $O((1/\varepsilon^d) \log(1/\varepsilon))$ s.t. $\forall p, q \in [0, 1)^d$, $\exists \sigma \in \Pi$ with:

Points between *p* and *q* in σ are distance at most $\varepsilon ||p - q||$ from *p* or *q*.

A simple data structure for dynamic $(1 + \varepsilon)$ -spanners

Definition

For a set *n* of *P* points in \mathbb{R}^d and $t \ge 1$, a *t*-spanner of *P* is a graph G = (P, E) such that for all $p, q \in P$,

$$\|p-q\| \leq \operatorname{dist}_{G}(p,q) \leq t\|p-q\|.$$

Problem

Maintain a $(1 + \varepsilon)$ -spanner of *P* dynamically.

reference	insertion time	deletion time
[Roditty, 2012]	$O(\log n)$	$O(n^{1/3} \log^{O(1)} n)$
[Gottlieb and Roditty, 2008a]	$O(\log^2 n)$	$O(\log^3 n)$
[Gottlieb and Roditty, 2008b]	$O(\log n)$	$O(\log n)$

Our result

Can dynamically maintain a $(1 + \epsilon)$ -spanner of P with:

- **1.** $O(n \log(1/\epsilon)/\epsilon^d)$ edges
- 2. $O(\log(1/\epsilon)/\epsilon^d)$ maximum degree
- 3. $O(\log n \log^2(1/\epsilon)/\epsilon^d)$ update time

- For each $\sigma \in \Pi$, add edges between consecutive points

- For each $\sigma \in \Pi$, add edges between consecutive points
- $(n-1)|\Pi| = O_d((n/\varepsilon^d)\log(1/\varepsilon))$ edges

- For each $\sigma \in \Pi$, add edges between consecutive points
- $(n-1)|\Pi| = O_d((n/\varepsilon^d)\log(1/\varepsilon))$ edges
- Maximum degree $\leq 2|\Pi| = O_d((1/\epsilon^d)\log(1/\epsilon))$

- For each $\sigma\in\Pi,$ add edges between consecutive points
- $(n-1)|\Pi| = O_d((n/\varepsilon^d)\log(1/\varepsilon))$ edges
- Maximum degree $\leq 2|\Pi| = O_d((1/\epsilon^d)\log(1/\epsilon))$
- Update time $O_d((1/\varepsilon^d) \log(n) \log^2(1/\varepsilon))$

- For each $\sigma\in\Pi,$ add edges between consecutive points
- $(n-1)|\Pi| = O_d((n/\varepsilon^d)\log(1/\varepsilon))$ edges
- Maximum degree $\leq 2|\Pi| = O_d((1/\epsilon^d)\log(1/\epsilon))$
- Update time $O_d((1/\varepsilon^d) \log(n) \log^2(1/\varepsilon))$
- Claim: G is a $(1 + \varepsilon)$ -spanner

 Proof by induction on length of pairs: dist_G(p, q) ≤ (1+ε) ||p − q||

- Proof by induction on length of pairs: dist_G(p, q) ≤ (1+ε) ||p − q||
- ► G is a (1+c_dε)-spanner for const. c_d

- Proof by induction on length of pairs: dist_G(p, q) ≤ (1+ε) ||p − q||
- ► G is a (1+c_dε)-spanner for const. c_d
- Readjust ε by c_d

 $\begin{array}{c|c}
& p' \\
& p' \\
& p' \\
& q' \\
& q' \\
& q' \\
& q' \\
& g' \\
& g$

Static & dynamic vertex-fault-tolerant spanners

Definition

For a set of *n* points *P* in \mathbb{R}^d and $t \ge 1$, a *k*-vertex-fault-tolerant *t*-spanner of *P* is a graph G = (P, E) such that

- 1. G is a t-spanner, and
- 2. For any $P' \subseteq P$, $|P'| \leq k$, $G \setminus P'$ is a t-spanner for $P \setminus P'$.

Problem

For a static point set *P*, efficiently construct a "small" *k*-VFT $(1 + \varepsilon)$ -spanner.

Previous work & result

reference	# edges	degree	running time
[Levcopoulos et al., 1998]	2 ^{0(k)} n	2 ^{0(k)}	$O(n\log n + 2^{O(k)}n)$
	$O(k^2n)$	unbounded	$O(n\log n + k^2n)$
	$O(kn \log n)$	unbounded	$O(kn \log n)$
[Lukovszki, 1999]	O(kn)	$O(k^2)$	$O(n \log^{d-1} n + kn \log \log n)$
[Czumaj and Zhao, 2004]	O(kn)	O (k)	$O(kn\log^d n + k^2n\log k)$
[Chan et al., 2015]	$O(k^2n)$	$O(k^2)$	$O(n \log n + k^2 n)$
[Kapoor and Li, 2013] &	O(kn)	O (k)	$O(n \log n + kn)$
[Solomon, 2014]			

Our result

- A *k*-VFT $(1 + \varepsilon)$ -spanner of *P* with
 - 1. $O(kn \log(1/\epsilon)/\epsilon^d)$ edges
 - 2. $O(k \log(1/\epsilon)/\epsilon^d)$ maximum degree
 - 3. $O((n \log n \log(1/\epsilon) + kn) \log(1/\epsilon)/\epsilon^d)$ construction time

For each σ ∈ Π and each p ∈ P, connect p to its k + 1 predecessors and successors in σ

- For each σ ∈ Π and each p ∈ P, connect p to its k + 1 predecessors and successors in σ
- $O(kn|\Pi|) = O_d((kn/\varepsilon^d)\log(1/\varepsilon))$ edges

- For each σ ∈ Π and each p ∈ P, connect p to its k + 1 predecessors and successors in σ
- $O(kn|\Pi|) = O_d((kn/\varepsilon^d)\log(1/\varepsilon))$ edges
- Maximum degree = $O(k|\Pi|) = O_d((k/\varepsilon^d)\log(1/\varepsilon))$

• G is a $(1 + \epsilon)$ -spanner

- G is a $(1 + \varepsilon)$ -spanner
- Consider $P' \subseteq P$, $|P'| \leq k$

- G is a $(1 + \varepsilon)$ -spanner
- Consider $P' \subseteq P$, $|P'| \leqslant k$

- G is a $(1 + \varepsilon)$ -spanner
- Consider $P' \subseteq P$, $|P'| \leq k$
- Let $\sigma \in \Pi$ with P' removed

- G is a $(1 + \varepsilon)$ -spanner
- Consider $P' \subseteq P$, $|P'| \leq k$
- Let $\sigma \in \Pi$ with P' removed

- G is a $(1 + \varepsilon)$ -spanner
- Consider $P' \subseteq P$, $|P'| \leqslant k$
- Let $\sigma \in \Pi$ with P' removed
- Consecutive points in P \ P' remain in G \ P' (by construction)

- G is a $(1 + \varepsilon)$ -spanner
- Consider $P' \subseteq P$, $|P'| \leqslant k$
- Let $\sigma \in \Pi$ with P' removed
- Consecutive points in P \ P' remain in G \ P' (by construction)

 \implies $G \setminus P'$ is a $(1 + \varepsilon)$ -spanner for $P \setminus P'$

Update time $O_d((\log n \log(1/\epsilon) + k)|\Pi|)$

Result

Our result

A *k*-VFT $(1 + \varepsilon)$ -spanner of *P* with

- **1.** $O(kn \log(1/\epsilon)/\epsilon^d)$ edges
- 2. $O(k \log(1/\epsilon)/\epsilon^d)$ maximum degree
- 3. $O((n \log n \log(1/\varepsilon) + kn) \log(1/\varepsilon)/\varepsilon^d)$ construction time

New: Can also maintain dynamically with update time

$$O\Big((\log n \log(1/\varepsilon) + k) \log(1/\varepsilon)/\varepsilon^d\Big).$$

Conclusion
Main Theorem

```
For \varepsilon \in (0, 1), there is a set \Pi of size O((1/\varepsilon^d) \log(1/\varepsilon)) s.t.
\forall p, q \in [0, 1)^d, \exists \sigma \in \Pi with:
```

Points between *p* and *q* in σ are distance at most $\varepsilon || p - q ||$ from *p* or *q*.

Remarks

► Extends to $\|\cdot\|_p$ norms

Main Theorem

```
For \varepsilon \in (0, 1), there is a set \Pi of size O((1/\varepsilon^d) \log(1/\varepsilon)) s.t.
\forall p, q \in [0, 1)^d, \exists \sigma \in \Pi with:
```

Points between *p* and *q* in σ are distance at most $\varepsilon || p - q ||$ from *p* or *q*.

Remarks

- ► Extends to $\|\cdot\|_p$ norms
- "Replacement" for well-separated pair decomposition

Main Theorem

```
For \varepsilon \in (0, 1), there is a set \Pi of size O((1/\varepsilon^d) \log(1/\varepsilon)) s.t.
\forall p, q \in [0, 1)^d, \exists \sigma \in \Pi with:
```

Points between *p* and *q* in σ are distance at most $\varepsilon || p - q ||$ from *p* or *q*.

Remarks

- ► Extends to $\|\cdot\|_p$ norms
- "Replacement" for well-separated pair decomposition
- $\blacktriangleright \approx$ locality-sensitive hashing (smaller family of orders, weaker guarantees)

1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$

- 1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$
- 2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]

- 1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$
- 2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
- 3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]

- 1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$
- 2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
- 3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
- 4. Dynamic vertex-fault-tolerant spanners: New

- 1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$
- 2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
- 3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
- 4. Dynamic vertex-fault-tolerant spanners: New
- 5. Approximate nearest neighbor: Not new

- 1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$
- 2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
- 3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
- 4. Dynamic vertex-fault-tolerant spanners: New
- 5. Approximate nearest neighbor: Not new
- 6. Dynamic approximate MST: Follows by dynamic spanners

- 1. Approximate bichromatic closest pair: Improved update time $\approx O(\log^3 n)$ [Eppstein, 1995] $\rightarrow O(\log n)$
- 2. Dynamic spanners: Simpler in Euclidean setting, matches best known [Gottlieb and Roditty, 2008b]
- 3. Static vertex-fault-tolerant spanners: Simpler in Euclidean setting, matches best known [Kapoor and Li, 2013] and [Solomon, 2014]
- 4. Dynamic vertex-fault-tolerant spanners: New
- 5. Approximate nearest neighbor: Not new
- 6. Dynamic approximate MST: Follows by dynamic spanners
- 7. Static robust $(1 + \epsilon)$ -spanners: See [Buchin et al., 2018]

References i

- Timothy M. Chan. Approximate nearest neighbor queries revisited. Discrete Comput. Geom., 20(3): 359–373, 1998.
- Brian Alspach. The wonderful Walecki construction. Bull. Inst. Combin. Appl., 52: 7–20, 2008. ISSN: 1183-1278.
- Li
 - Liam Roditty. Fully dynamic geometric spanners. Algorithmica, 62(3-4): 1073–1087, 2012.
- Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully dynamic geometric spanners and geometric routing. Proc. 19th ACM-SIAM Sympos. Discrete Alg. (SODA), 591–600, 2008.
- Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for doubling metric spaces. Proc. 16th Annu. Euro. Sympos. Alg. (ESA), 478–489, 2008.

References ii

- Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid. Efficient algorithms for constructing fault-tolerant geometric spanners. Proc. 30th ACM Sympos. Theory Comput. (STOC), 186–195, 1998.
- Tamás Lukovszki. New results of fault tolerant geometric spanners. Proc. 6th Workshop Alg. Data Struct. (WADS), vol. 1663. 193–204, 1999.
 - Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners. Discrete Comput. Geom., 32(2): 207–230, 2004.
- T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New doubling spanners: Better and simpler. SIAM J. Comput., 44(1): 37–53, 2015.
- Sanjiv Kapoor and Xiang-Yang Li. Efficient construction of spanners in *d-dimensions*. CoRR, abs/1303.7217, 2013.

- Shay Solomon. From hierarchical partitions to hierarchical covers: Optimal fault-tolerant spanners for doubling metrics. Proc. 46th ACM Sympos. Theory Comput. (STOC), 363–372, 2014.
- David Eppstein. Dynamic Euclidean minimum spanning trees and extrema of binary functions. Discrete Comput. Geom., 13: 111–122, 1995.

Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A spanner for the day after. CoRR, abs/1811.06898, 2018. arXiv: 1811.06898.