
Locality-Sensitive Orderings & Their
Applications

Timothy Chan, Sariel Har-Peled, Mitchell Jones
August 2019

University of Illinois at Urbana-Champaign

1/41

Low dimension proximity problems: d = O(1)

Nearest neighbor Closest pair problems Spanners/MST

Goal: Dynamic data structures which maintain/return a
(1+ ε)-approximation

2/41

In this talk

I Quadtrees: Basic data structure in computational geometry
I Many orderings of points in Rd (Z-order)
I Two new tricks to the mix

=⇒ Simpler data structures for many proximity problems
(plus some new results)

3/41

New technique: Locality-sensitive orderings

q
p

⇓
σ

4/41

New technique: Locality-sensitive orderings

q
p

⇓
σ

4/41

New technique: Locality-sensitive orderings

q
p

⇓
σ

Definition: Locality-Sensitive Orderings
Let ε ∈ (0, 1). A collection of orderings Π over [0, 1)d s.t. for all
p,q ∈ [0, 1)d, exists σ ∈ Π where:

∀p ≺σ z ≺σ q : min(‖z − p‖, ‖z − q‖) 6 ε‖p− q‖.

5/41

New technique: Locality-sensitive orderings

Definition: Locality-Sensitive Orderings
Let ε ∈ (0, 1). A collection of orderings Π over [0, 1)d s.t. for all
p,q ∈ [0, 1)d, exists σ ∈ Π where:

∀p ≺σ z ≺σ q : min(‖z − p‖, ‖z − q‖) 6 ε‖p− q‖.

Theorem
There are locality-sensitive orderings of size O

(
(1/εd) log(1/ε)

)
.

6/41

Main applications

I New: (1+ ε)-bichromatic closest pair

I Simpler: Dynamic (1+ ε)-spanners
I New: Dynamic k-vertex-fault-tolerant (1+ ε)-spanners
I ...

7/41

Main applications

I New: (1+ ε)-bichromatic closest pair
I Simpler: Dynamic (1+ ε)-spanners

I New: Dynamic k-vertex-fault-tolerant (1+ ε)-spanners
I ...

7/41

Main applications

I New: (1+ ε)-bichromatic closest pair
I Simpler: Dynamic (1+ ε)-spanners
I New: Dynamic k-vertex-fault-tolerant (1+ ε)-spanners

I ...

7/41

Main applications

I New: (1+ ε)-bichromatic closest pair
I Simpler: Dynamic (1+ ε)-spanners
I New: Dynamic k-vertex-fault-tolerant (1+ ε)-spanners
I ...

7/41

Warmup: Constant factor
approximation for bichromatic
closest pair

Bichromatic closest pair

Problem (c-approximation)
Maintain a pair (r ′,b ′) s.t. ‖r ′ − b ′‖ 6 c ·min

(r,b)
‖r − b‖.

8/41

Bichromatic closest pair

Problem (c-approximation)
Maintain a pair (r ′,b ′) s.t. ‖r ′ − b ′‖ 6 c ·min

(r,b)
‖r − b‖.

8/41

Quadtrees

9/41

Quadtrees

9/41

Quadtrees

9/41

Quadtrees

9/41

Quadtrees

9/41

Quadtrees: Z-order

DFS of a quadtree =⇒ ordering of points (Z-order)

10/41

Quadtrees: Z-order

DFS of a quadtree =⇒ ordering of points (U-order)

11/41

Ordering of points

Hope: points close together ≈ nearby in ordering

12/41

Ordering of points

Hope: points close together ≈ nearby in ordering

1

2

3

4

5 6
7

8
9

11

12
10

13

12/41

Computing the Z-order

I Let p = (x, y) ∈ [2w]× [2w]
I x = xwxw−1 . . . x1
I y = ywyw−1 . . . y1

I shuffle(p) = ywxwyw−1xw−1 . . . y1x1
I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma
shuffle(p) and shuffle(q) can be compared with O(1)
bitwise-and/xor operations.

13/41

Computing the Z-order

I Let p = (x, y) ∈ [2w]× [2w]
I x = xwxw−1 . . . x1
I y = ywyw−1 . . . y1
I shuffle(p) = ywxwyw−1xw−1 . . . y1x1
I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma
shuffle(p) and shuffle(q) can be compared with O(1)
bitwise-and/xor operations.

13/41

Computing the Z-order

I Let p = (x, y) ∈ [2w]× [2w]
I x = xwxw−1 . . . x1
I y = ywyw−1 . . . y1
I shuffle(p) = ywxwyw−1xw−1 . . . y1x1
I Position of p in Z-order = shuffle(p)

00 01 10 11

00

01

10

11

0010=2

Lemma
shuffle(p) and shuffle(q) can be compared with O(1)
bitwise-and/xor operations.

13/41

Solving the problem in 1D: A solution?

I Map the point set to 1D

I Maintain sorted order
I Maintain consecutive
red/blue pairs with min-heap

I Updates change O(1)
consecutive pairs
=⇒ Update time O(log n)

p

q

⇓ Delete p

⇓ Insert q

14/41

Solving the problem in 1D: A solution?

I Map the point set to 1D
I Maintain sorted order

I Maintain consecutive
red/blue pairs with min-heap

I Updates change O(1)
consecutive pairs
=⇒ Update time O(log n)

p

q

⇓ Delete p

⇓ Insert q

14/41

Solving the problem in 1D: A solution?

I Map the point set to 1D
I Maintain sorted order
I Maintain consecutive
red/blue pairs with min-heap

I Updates change O(1)
consecutive pairs
=⇒ Update time O(log n)

p

q

⇓ Delete p

⇓ Insert q

14/41

Solving the problem in 1D: A solution?

I Map the point set to 1D
I Maintain sorted order
I Maintain consecutive
red/blue pairs with min-heap

I Updates change O(1)
consecutive pairs

=⇒ Update time O(log n)

p

q

⇓ Delete p

⇓ Insert q

14/41

Solving the problem in 1D: A solution?

I Map the point set to 1D
I Maintain sorted order
I Maintain consecutive
red/blue pairs with min-heap

I Updates change O(1)
consecutive pairs
=⇒ Update time O(log n)

p

q

⇓ Delete p

⇓ Insert q

14/41

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

15/41

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

15/41

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

15/41

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

3

4 5 6

7

8

9

11

12

10

15/41

Not quite a solution

I Points nearby in Rd 6=⇒
nearby in Z-order

I Idea: Shift the point set

1

2

4

3 6 7

8

5

12

10

11

9

15/41

Shifting

Lemma [Chan, 1998]
For i = 0, . . . ,d, vi = (i/(d+ 1), . . . , i/(d+ 1)).

For any p,q ∈ [0, 1)d, exists i ∈ {0, . . . ,d} and quadtree cell �:

1. p+ vi,q+ vi ∈ �

2. (d+ 1)‖p− q‖ < sidelength(�) 6 2(d+ 1)‖p− q‖.

16/41

A correct solution

I Shift point set d+ 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time
I Claim: Od(1) approximation

17/41

A correct solution

I Shift point set d+ 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time
I Claim: Od(1) approximation

17/41

A correct solution

I Shift point set d+ 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time

I Claim: Od(1) approximation

17/41

A correct solution

I Shift point set d+ 1 times: P0, . . . ,Pd

. . .DS for P0 DS for P1 DS for Pd

=⇒ Od(log n) update time
I Claim: Od(1) approximation

17/41

Correctness (cont.)

b

r

18/41

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

18/41

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rb

18/41

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rbb′ r′

18/41

Correctness (cont.)

b

r

sidelength(�) ≤ 2(d+ 1)‖r − b‖

I
rbb′ r′

‖r′ − b′‖ ≤ diam(�) ≤
√
d · sidelength(�) = Od(1)‖r − b‖

18/41

The challenge:
(1+ ε)-approximate bichromatic
closest pair

Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N

I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children
I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε

19/41

Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children
I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε

19/41

Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children

I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε

19/41

Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children

I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε

1

1/2

1/4

1/8

1/16

. . .

ε = 2−3

19/41

Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children
I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε

1

1/2

1/4

1/8

1/16

. . .

ε = 2−3

19/41

Key idea I: Reducing the approximation factor

I Assume ε = 2−E for E ∈ N
I Idea: Pack many
“ε-quadtrees” into a regular
quadtree

I ε-quadtrees have 1/εd

children
I Can partition a regular
quadtree into lg(1/ε)
ε-quadtrees

I Call them T1ε, . . . ,T
E
ε

1

1/2

1/4

1/8

1/16

. . .

ε = 2−3

19/41

O(1) problems

Extend Z-order to ε-quadtrees by ordering 1/εd child cells

2

4

6

7

8

10

11

12 13

1415

161

9

5

3

Which order to pick?

20/41

O(1) problems

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

21/41

O(1) problems

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

�p

�q

21/41

O(1) problems

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Ti
ε

�p

�q

Iq Ip

21/41

Key idea II: Ordering quadtree cells

Problem

Find a family O of orderings of the 1/εd cells s.t.:

For any �1,�2, there is an ordering σ ∈ O with �1 adjacent to �2.

22/41

A necessary subproblem

Lemma [Alspach, 2008]
For JnK = {1, . . . ,n}, there are dn/2e orderings O of JnK such that for
all i, j ∈ JnK, ∃σ ∈ O where i and j are adjacent in σ.

vi
vi vi vi

vi vi

23/41

Ordering quadtree cells

Corollary

There is a set O(ε) of O(1/εd) orderings such that for any �1,�2,
there is an order σ ∈ O(ε) where �1 and �2 are adjacent.

24/41

What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees

I Each quadtree has lg(1/ε) ε-quadtrees
I Each ε-quadtree has O(1/εd) orderings

=⇒ Od
(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings
I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.

25/41

What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees
I Each quadtree has lg(1/ε) ε-quadtrees

I Each ε-quadtree has O(1/εd) orderings
=⇒ Od

(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings
I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.

25/41

What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees
I Each quadtree has lg(1/ε) ε-quadtrees
I Each ε-quadtree has O(1/εd) orderings

=⇒ Od
(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings
I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.

25/41

What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees
I Each quadtree has lg(1/ε) ε-quadtrees
I Each ε-quadtree has O(1/εd) orderings

=⇒ Od
(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings
I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.

25/41

What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees
I Each quadtree has lg(1/ε) ε-quadtrees
I Each ε-quadtree has O(1/εd) orderings

=⇒ Od
(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings

I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.

25/41

What we have so far

I d+ 1 shifted point sets ≡ d+ 1 quadtrees
I Each quadtree has lg(1/ε) ε-quadtrees
I Each ε-quadtree has O(1/εd) orderings

=⇒ Od
(
(1/εd) log(1/ε)

)
different orderings of P

I Π is this family of locality-sensitive orderings
I For σ ∈ Π, can decide p ≺σ q with O(log(1/ε)) bitwise-logical
operations.

25/41

The solution

I Maintain the 1D data structure for all orderings Π

I |Π| = O((1/εd) log(1/ε))
I Update time: O(|Π| · log(n) · log(1/ε)) = Od((1/εd) log(n) log2(1/ε))
I Space: O(|Π| · n) = Od((n/εd) log(1/ε))
I Claim: Maintains r ′,b ′ with ‖r ′ − b ′‖ 6 (1+ ε)‖r − b‖

26/41

The solution

I Maintain the 1D data structure for all orderings Π
I |Π| = O((1/εd) log(1/ε))

I Update time: O(|Π| · log(n) · log(1/ε)) = Od((1/εd) log(n) log2(1/ε))
I Space: O(|Π| · n) = Od((n/εd) log(1/ε))
I Claim: Maintains r ′,b ′ with ‖r ′ − b ′‖ 6 (1+ ε)‖r − b‖

26/41

The solution

I Maintain the 1D data structure for all orderings Π
I |Π| = O((1/εd) log(1/ε))
I Update time: O(|Π| · log(n) · log(1/ε)) = Od((1/εd) log(n) log2(1/ε))

I Space: O(|Π| · n) = Od((n/εd) log(1/ε))
I Claim: Maintains r ′,b ′ with ‖r ′ − b ′‖ 6 (1+ ε)‖r − b‖

26/41

The solution

I Maintain the 1D data structure for all orderings Π
I |Π| = O((1/εd) log(1/ε))
I Update time: O(|Π| · log(n) · log(1/ε)) = Od((1/εd) log(n) log2(1/ε))
I Space: O(|Π| · n) = Od((n/εd) log(1/ε))

I Claim: Maintains r ′,b ′ with ‖r ′ − b ′‖ 6 (1+ ε)‖r − b‖

26/41

The solution

I Maintain the 1D data structure for all orderings Π
I |Π| = O((1/εd) log(1/ε))
I Update time: O(|Π| · log(n) · log(1/ε)) = Od((1/εd) log(n) log2(1/ε))
I Space: O(|Π| · n) = Od((n/εd) log(1/ε))
I Claim: Maintains r ′,b ′ with ‖r ′ − b ′‖ 6 (1+ ε)‖r − b‖

26/41

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

27/41

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

27/41

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

27/41

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

Ir Ib

σ ∈ Π

27/41

Correctness

r

b

sidelength(�) ≤ 2(d+ 1)‖r − b‖

Tε

�b

�r

Ir Ib

σ ∈ Π

r

b

sidelength(�b) = ε · sidelength(�)

r′

b′

=⇒

27/41

The result

Our result
Can maintain the (1+ ε)-approximate bichromatic closest pair
dynamically with:

1. O(log n log2(1/ε)/εd) update time
2. O(n log(1/ε)/εd) space

28/41

The result

Main Theorem
For ε ∈ (0, 1), there is a set Π of size
O((1/εd) log(1/ε)) s.t. ∀p,q ∈ [0, 1)d,
∃σ ∈ Π with:

Points between p and q in σ are
distance at most ε‖p− q‖ from p or q.

q
p

⇓
σ

29/41

A simple data structure for
dynamic (1+ ε)-spanners

Spanners

Definition

For a set n of P points in Rd and t > 1, a t-spanner of P is a graph
G = (P, E) such that for all p,q ∈ P,

‖p− q‖ 6 distG(p,q) 6 t‖p− q‖.

Problem
Maintain a (1+ ε)-spanner of P dynamically.

30/41

Previous work & result

reference insertion time deletion time
[Roditty, 2012] O(log n) O(n1/3 logO(1) n)
[Gottlieb and Roditty, 2008a] O(log2 n) O(log3 n)
[Gottlieb and Roditty, 2008b] O(log n) O(log n)

Our result
Can dynamically maintain a (1+ ε)-spanner of P with:

1. O(n log(1/ε)/εd) edges
2. O(log(1/ε)/εd) maximum degree
3. O(log n log2(1/ε)/εd) update time

31/41

Construction

I For each σ ∈ Π, add edges between consecutive points

I (n− 1)|Π| = Od((n/εd) log(1/ε)) edges
I Maximum degree 6 2|Π| = Od((1/εd) log(1/ε))
I Update time Od((1/εd) log(n) log2(1/ε))
I Claim: G is a (1+ ε)-spanner

32/41

Construction

I For each σ ∈ Π, add edges between consecutive points
I (n− 1)|Π| = Od((n/εd) log(1/ε)) edges

I Maximum degree 6 2|Π| = Od((1/εd) log(1/ε))
I Update time Od((1/εd) log(n) log2(1/ε))
I Claim: G is a (1+ ε)-spanner

32/41

Construction

I For each σ ∈ Π, add edges between consecutive points
I (n− 1)|Π| = Od((n/εd) log(1/ε)) edges
I Maximum degree 6 2|Π| = Od((1/εd) log(1/ε))

I Update time Od((1/εd) log(n) log2(1/ε))
I Claim: G is a (1+ ε)-spanner

32/41

Construction

I For each σ ∈ Π, add edges between consecutive points
I (n− 1)|Π| = Od((n/εd) log(1/ε)) edges
I Maximum degree 6 2|Π| = Od((1/εd) log(1/ε))
I Update time Od((1/εd) log(n) log2(1/ε))

I Claim: G is a (1+ ε)-spanner

32/41

Construction

I For each σ ∈ Π, add edges between consecutive points
I (n− 1)|Π| = Od((n/εd) log(1/ε)) edges
I Maximum degree 6 2|Π| = Od((1/εd) log(1/ε))
I Update time Od((1/εd) log(n) log2(1/ε))
I Claim: G is a (1+ ε)-spanner

32/41

Proof idea

I Proof by induction on length
of pairs:
distG(p,q) 6 (1+ ε)‖p− q‖

I G is a (1+ cdε)-spanner for
const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E

33/41

Proof idea

I Proof by induction on length
of pairs:
distG(p,q) 6 (1+ ε)‖p− q‖

I G is a (1+ cdε)-spanner for
const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E

33/41

Proof idea

I Proof by induction on length
of pairs:
distG(p,q) 6 (1+ ε)‖p− q‖

I G is a (1+ cdε)-spanner for
const. cd

I Readjust ε by cd

p

q

sidelength(�) ≤ 2(d+ 1)‖p− q‖

Tε

�q

sidelength(�q) = ε · sidelength(�)

p′

q′

p′q′ ∈ E

33/41

Static & dynamic
vertex-fault-tolerant spanners

Fault-tolerant spanners

Definition

For a set of n points P in Rd and t > 1, a k-vertex-fault-tolerant
t-spanner of P is a graph G = (P, E) such that

1. G is a t-spanner, and
2. For any P ′ ⊆ P, |P ′| 6 k, G \ P ′ is a t-spanner for P \ P ′.

Problem
For a static point set P, efficiently construct a “small” k-VFT
(1+ ε)-spanner.

34/41

Previous work & result

reference # edges degree running time
[Levcopoulos et al., 1998] 2O(k)n 2O(k) O(n log n+ 2O(k)n)

O(k2n) unbounded O(n log n+ k2n)
O(kn log n) unbounded O(kn log n)

[Lukovszki, 1999] O(kn) O(k2) O(n logd−1 n+ kn log log n)
[Czumaj and Zhao, 2004] O(kn) O(k) O(kn logd n+ k2n log k)
[Chan et al., 2015] O(k2n) O(k2) O(n log n+ k2n)
[Kapoor and Li, 2013] & O(kn) O(k) O(n log n+ kn)
[Solomon, 2014]

Our result
A k-VFT (1+ ε)-spanner of P with

1. O(kn log(1/ε)/εd) edges
2. O(k log(1/ε)/εd) maximum degree
3. O

(
(n log n log(1/ε) + kn) log(1/ε)/εd

)
construction time

35/41

Construction

I For each σ ∈ Π and each p ∈ P, connect p to its k+ 1
predecessors and successors in σ

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges
I Maximum degree = O(k|Π|) = Od((k/εd) log(1/ε))

36/41

Construction

I For each σ ∈ Π and each p ∈ P, connect p to its k+ 1
predecessors and successors in σ

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges

I Maximum degree = O(k|Π|) = Od((k/εd) log(1/ε))

36/41

Construction

I For each σ ∈ Π and each p ∈ P, connect p to its k+ 1
predecessors and successors in σ

I O(kn|Π|) = Od((kn/εd) log(1/ε)) edges
I Maximum degree = O(k|Π|) = Od((k/εd) log(1/ε))

36/41

Sketch proof

I G is a (1+ ε)-spanner

I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41

Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k

I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41

Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k

I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P
P ′

37/41

Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P
P ′

37/41

Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed

I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41

Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)

=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41

Sketch proof

I G is a (1+ ε)-spanner
I Consider P ′ ⊆ P, |P ′| 6 k
I Let σ ∈ Π with P ′ removed
I Consecutive points in P \ P ′

remain in G \ P ′ (by construction)
=⇒ G \ P ′ is a (1+ ε)-spanner
for P \ P ′

k = 2

P

37/41

Update time

Any update changes O(k) edges in G

p

k = 2

q

Update time Od((log n log(1/ε) + k)|Π|)

38/41

Update time

Any update changes O(k) edges in G

p

k = 2

q

Update time Od((log n log(1/ε) + k)|Π|)

38/41

Update time

Any update changes O(k) edges in G

p

k = 2

Update time Od((log n log(1/ε) + k)|Π|)

38/41

Update time

Any update changes O(k) edges in G

p

k = 2

Update time Od((log n log(1/ε) + k)|Π|)

38/41

Result

Our result
A k-VFT (1+ ε)-spanner of P with

1. O(kn log(1/ε)/εd) edges
2. O(k log(1/ε)/εd) maximum degree
3. O

(
(n log n log(1/ε) + kn) log(1/ε)/εd

)
construction time

New: Can also maintain dynamically with update time

O
(
(log n log(1/ε) + k) log(1/ε)/εd

)
.

39/41

Conclusion

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) s.t.
∀p,q ∈ [0, 1)d, ∃σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p
or q.

Remarks

I Extends to ‖ · ‖p norms

I “Replacement” for well-separated pair decomposition
I ≈ locality-sensitive hashing (smaller family of orders, weaker
guarantees)

40/41

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) s.t.
∀p,q ∈ [0, 1)d, ∃σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p
or q.

Remarks

I Extends to ‖ · ‖p norms
I “Replacement” for well-separated pair decomposition

I ≈ locality-sensitive hashing (smaller family of orders, weaker
guarantees)

40/41

Main Theorem

Main Theorem

For ε ∈ (0, 1), there is a set Π of size O((1/εd) log(1/ε)) s.t.
∀p,q ∈ [0, 1)d, ∃σ ∈ Π with:

Points between p and q in σ are distance at most ε‖p− q‖ from p
or q.

Remarks

I Extends to ‖ · ‖p norms
I “Replacement” for well-separated pair decomposition
I ≈ locality-sensitive hashing (smaller family of orders, weaker
guarantees)

40/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

Applications

1. Approximate bichromatic closest pair: Improved update time
≈ O(log3 n) [Eppstein, 1995]→ O(log n)

2. Dynamic spanners: Simpler in Euclidean setting, matches best
known [Gottlieb and Roditty, 2008b]

3. Static vertex-fault-tolerant spanners: Simpler in Euclidean
setting, matches best known [Kapoor and Li, 2013] and
[Solomon, 2014]

4. Dynamic vertex-fault-tolerant spanners: New

5. Approximate nearest neighbor: Not new

6. Dynamic approximate MST: Follows by dynamic spanners

7. Static robust (1+ ε)-spanners: See [Buchin et al., 2018]

41/41

References i

Timothy M. Chan. Approximate nearest neighbor queries revisited.
Discrete Comput. Geom., 20(3): 359–373, 1998.

Brian Alspach. The wonderful Walecki construction. Bull. Inst. Combin.
Appl., 52: 7–20, 2008. issn: 1183-1278.

Liam Roditty. Fully dynamic geometric spanners. Algorithmica, 62(3-4):
1073–1087, 2012.

Lee-Ad Gottlieb and Liam Roditty. Improved algorithms for fully
dynamic geometric spanners and geometric routing. Proc. 19th
ACM-SIAM Sympos. Discrete Alg. (SODA), 591–600, 2008.

Lee-Ad Gottlieb and Liam Roditty. An optimal dynamic spanner for
doubling metric spaces. Proc. 16th Annu. Euro. Sympos. Alg. (ESA),
478–489, 2008.

http://dx.doi.org/10.1007/PL00009390
http://dx.doi.org/10.1007/s00453-011-9504-7
http://dx.doi.org/10.1007/978-3-540-87744-8_40
http://dx.doi.org/10.1007/978-3-540-87744-8_40

References ii

Christos Levcopoulos, Giri Narasimhan, and Michiel H. M. Smid.
Efficient algorithms for constructing fault-tolerant geometric
spanners. Proc. 30th ACM Sympos. Theory Comput. (STOC), 186–195,
1998.

Tamás Lukovszki. New results of fault tolerant geometric spanners.
Proc. 6th Workshop Alg. Data Struct. (WADS), vol. 1663. 193–204, 1999.

Artur Czumaj and Hairong Zhao. Fault-tolerant geometric spanners.
Discrete Comput. Geom., 32(2): 207–230, 2004.

T.-H. Hubert Chan, Mingfei Li, Li Ning, and Shay Solomon. New
doubling spanners: Better and simpler. SIAM J. Comput., 44(1): 37–53,
2015.

Sanjiv Kapoor and Xiang-Yang Li. Efficient construction of spanners in
d-dimensions. CoRR, abs/1303.7217, 2013.

http://dx.doi.org/10.1145/276698.276734
http://dx.doi.org/10.1145/276698.276734
http://dx.doi.org/10.1007/3-540-48447-7_20
http://dx.doi.org/10.1137/130930984
http://dx.doi.org/10.1137/130930984

References iii

Shay Solomon. From hierarchical partitions to hierarchical covers:
Optimal fault-tolerant spanners for doubling metrics. Proc. 46th ACM
Sympos. Theory Comput. (STOC), 363–372, 2014.

David Eppstein. Dynamic Euclidean minimum spanning trees and
extrema of binary functions. Discrete Comput. Geom., 13: 111–122, 1995.

Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A spanner for the day
after. CoRR, abs/1811.06898, 2018. arXiv: 1811.06898.

http://dx.doi.org/10.1145/2591796.2591864
http://dx.doi.org/10.1145/2591796.2591864
https://arxiv.org/abs/1811.06898

	Warmup: Constant factor approximation for bichromatic closest pair
	Problem definition
	Preliminaries: Quadtrees and Z-orders
	A first solution
	The correct solution

	The challenge: (1 +)-approximate bichromatic closest pair
	Intuition
	The solution

	A simple data structure for dynamic (1+)-spanners
	Static & dynamic vertex-fault-tolerant spanners
	Conclusion

