Active Learning a Convex Body in Low Dimensions

Sariel Har-Peled, <u>Mitchell Jones</u> and Rahul Saladi UIUC Theory Seminar, November 11, 2019

Problem

Input: $P \subset \mathbb{R}^2$, oracle for unknown convex body *C*.

Oracle: Query $q \in \mathbb{R}^2$, returns true $\iff q \in C$.

Goal: Compute $P \cap C$ using fewest number of oracle queries.

- Input space X
- Learner data: $x_1, \ldots, x_n \in X$ (without labels)
- ► Learner can query oracle for label of any $q \in X$
- Build classifier using few queries
- What queries to choose?

- Worst case: query all points
- Question: More interesting model to study?

Problem

Input: $P \subset \mathbb{R}^2$, oracle for unknown convex body *C*.

Oracle: Separation oracle

Goal: Compute $P \cap C$ using fewest number of oracle queries.

Slightly stronger model

- Slightly stronger model
- Separation oracles are well-known (OR)

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:
 - ▶ Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:
 - ▶ Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
 - Proximity probe [Panahi, Adler, et al., 2013]

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:
 - ▶ Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
 - Proximity probe [Panahi, Adler, et al., 2013]
- Minimizing communication complexity

Allow error in classification

- Allow error in classification
- Algorithm:

- Allow error in classification
- Algorithm:
 - 1. Randomly sample input

- Allow error in classification
- Algorithm:
 - 1. Randomly sample input
 - 2. Obtain labels for sample

- Allow error in classification
- Algorithm:
 - 1. Randomly sample input
 - 2. Obtain labels for sample
 - 3. Classify sample

- Allow error in classification
- Algorithm:
 - 1. Randomly sample input
 - 2. Obtain labels for sample
 - 3. Classify sample
- Size of sample?

Misclassified points = symmetric difference of learned and true classifier

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \implies symmetric difference is a wedge

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \implies symmetric difference is a wedge
- ► Wedge has finite VC dimension \implies random sample of size $\approx O(\varepsilon^{-1} \log \varepsilon^{-1}) \implies \varepsilon n \text{ error}$

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \implies symmetric difference is a wedge
- ► Wedge has finite VC dimension \implies random sample of size $\approx O(\varepsilon^{-1} \log \varepsilon^{-1}) \implies \varepsilon n \text{ error}$
- Scheme fails for arbitrary convex regions

Hard vs. easy instances

Worst case: query all points

Hard vs. easy instances

- Worst case: query all points
- Goal: design instance sensitive algorithms

• $F_{in} = \text{convex polygon with fewest vertices s.t. } F_{in} \subseteq C \text{ and } C \cap P = F_{in} \cap P.$

- $F_{in} = \text{convex polygon with fewest vertices s.t. } F_{in} \subseteq C \text{ and } C \cap P = F_{in} \cap P.$
- F_{out} = convex polygon with fewest vertices s.t. C ⊆ F_{out} and C ∩ P = F_{out} ∩ P.

- $F_{in} = \text{convex polygon with fewest vertices s.t. } F_{in} \subseteq C \text{ and } C \cap P = F_{in} \cap P.$
- F_{out} = convex polygon with fewest vertices s.t. C ⊆ F_{out} and C ∩ P = F_{out} ∩ P.
- Separation price $\sigma(P, C) = |F_{in}| + |F_{out}|$.

- $F_{in} = \text{convex polygon with fewest vertices s.t. } F_{in} \subseteq C \text{ and } C \cap P = F_{in} \cap P.$
- ► F_{out} = convex polygon with fewest vertices s.t. $C \subseteq F_{out}$ and $C \cap P = F_{out} \cap P$.
- Separation price $\sigma(P, C) = |F_{in}| + |F_{out}|$.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

• Q: set of queries, $Q_{in} = C \cap Q$, $K = CH(Q_{in})$

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

- Q: set of queries, $Q_{in} = C \cap Q$, $K = CH(Q_{in})$
- $K \subseteq C$ and $K \cap P = C \cap P$

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

- Q: set of queries, $Q_{in} = C \cap Q$, $K = CH(Q_{in})$
- $K \subseteq C$ and $K \cap P = C \cap P$

 $\implies |Q_{\rm in}| \ge |K| \ge |F_{\rm in}|$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$ (†)

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$ (†)
Classify (2D)	σ(P , C)	$O(\sigma(P, C) \log^2 n)$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$ (†)
Classify (2D)	σ(P , C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$ (†)

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$ (†)
Classify (2D)	σ(P , C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$ (†)
Verify in (2D)	F _{in}	$O(F_{\rm in} \log n)$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$ (†)
Classify (2D)	σ(P , C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$ (†)
Verify in (2D)	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out (2D)	$ F_{\rm out} $	$O(F_{\text{out}} \log n)$ (‡)

(†) k(P) = largest # of pts of P in convex position
(‡) Randomized, w.h.p

Results

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$ (†)
Classify (2D)	σ(P , C)	$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$ (†)
Verify in (2D)	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out (2D)	$ F_{\rm out} $	$O(F_{\text{out}} \log n)$ (‡)

(†) k(P) = largest # of pts of P in convex position
(‡) Randomized, w.h.p

First attempt: A greedy algorithm

• Maintain approximation $B \subseteq C$

- Maintain approximation $B \subseteq C$
- Operations:

- Maintain approximation $B \subseteq C$
- Operations:
 - 1. **expand**(p): Update B = CH(B + p)
 - 2. **remove**(ℓ^+): Classify points $P \cap \ell^+$ as outside C

- Maintain approximation $B \subseteq C$
- Operations:
 - 1. **expand**(p): Update B = CH(B + p)
 - 2. **remove**(ℓ^+): Classify points $P \cap \ell^+$ as outside C
- ► $c \in \mathbb{R}^2$ is a centerpoint for *P* if for all halfspaces ℓ^+ : $c \in \ell^+ \implies |P \cap \ell^+| \ge |P|/3.$

$U \subseteq P$ unclassified points. While $U \neq \emptyset$:

1. $\ell^+ =$ halfspace tangent to *B* maximizing $|\ell^+ \cap U|$

$U \subseteq P$ unclassified points. While $U \neq \emptyset$:

1. $\ell^+ =$ halfspace tangent to *B* maximizing $|\ell^+ \cap U|$

- 1. $\ell^+ = halfspace tangent to B maximizing |\ell^+ \cap U|$
- 2. c =centerpoint of $\ell^+ \cap U$

- 1. $\ell^+ = halfspace tangent to B maximizing |\ell^+ \cap U|$
- 2. c =centerpoint of $\ell^+ \cap U$

- 1. $l^+ =$ halfspace tangent to *B* maximizing $|l^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using *c*:

$U \subseteq P$ unclassified points. While $U \neq \emptyset$:

- 1. ℓ^+ = halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
- 2. $c = \text{centerpoint of } \ell^+ \cap U$
- 3. Query oracle using c:

(A) $c \in C \implies expand(c)$

$U \subseteq P$ unclassified points. While $U \neq \emptyset$:

- 1. $\ell^+ = halfspace tangent to B maximizing |\ell^+ \cap U|$
- 2. c =centerpoint of $\ell^+ \cap U$
- 3. Query oracle using c:

(A) $c \in C \implies expand(c)$

(B) $c \notin C$, h is a separating line \implies remove(h)

$U \subseteq P$ unclassified points. While $U \neq \emptyset$:

- 1. $\ell^+ = halfspace tangent to B maximizing |\ell^+ \cap U|$
- 2. c =centerpoint of $\ell^+ \cap U$
- 3. Query oracle using c:

(A) $c \in C \implies expand(c)$

(B) $c \notin C$, h is a separating line \implies remove(h)

Animation

Count visible pairs of points

- Count visible pairs of points
- In each iteration:

- Count visible pairs of points
- In each iteration:
 (A) Pairs lose visibility

Analysis

- Count visible pairs of points
- In each iteration:
 - (A) Pairs lose visibility
 - (B) Classify points

Analysis

- Count visible pairs of points
- In each iteration:
 - (A) Pairs lose visibility
 - (B) Classify points

Lemma

Number of visible pairs decrease by a (roughly) constant fraction in each iteration.

Visibility graph $G_B = (P, E)$:

 $(p,q) \in E \iff pq \cap B = \emptyset$

 $p \in P$ has interval I(p) $(p,q) \in E \iff I(p) \cap I(q) \neq \emptyset$

Observations:

1. $Q \subseteq P$ independent set in $G_B \implies Q$ is in convex position

$(p,q) \in E \iff pq \cap B = \emptyset$

Observations:

- 1. $Q \subseteq P$ independent set in $G_B \implies Q$ is in convex position
- 2. $Q \subseteq P$ and B are linearly separable $\implies Q$ clique in G_B

$(p,q) \in E \iff pq \cap B = \emptyset$

 $\alpha(G_B) =$ size of largest indep. set, $\omega(G_B) =$ maximum depth, then $|E| = O(\alpha(G_B)\omega(G_B)^2)$. $p \in P$ has interval I(p) $(p,q) \in E \iff I(p) \cap I(q) \neq \emptyset$

• Compute halfspace ℓ^+ tangent to *B* maximizing $|\ell^+ \cap U|$

- Compute halfspace ℓ^+ tangent to *B* maximizing $|\ell^+ \cap U|$
- Set $m = |\ell^+ \cap U| \ge \omega(G_B)$

- Compute halfspace ℓ^+ tangent to *B* maximizing $|\ell^+ \cap U|$
- Set $m = |\ell^+ \cap U| \ge \omega(G_B)$
- $c = \text{centerpoint of } \ell^+ \cap U$

- Compute halfspace ℓ^+ tangent to *B* maximizing $|\ell^+ \cap U|$
- Set $m = |\ell^+ \cap U| \ge \omega(G_B)$
- $c = \text{centerpoint of } \ell^+ \cap U$

Lemma 2

When $c \in C$, expand(c) deletes $\geq \omega(G_B)^2/36$ edges from G_B .

 $\alpha(G_B) = \text{size of largest indep. set, } \omega(G_B) = \text{maximum depth,}$ then $|E| = O(\alpha(G_B)\omega(G_B)^2).$

Lemma 2

When $c \in C$, expand(c) deletes $\geq \omega(G_B)^2/36$ edges from G_B .

 $\alpha(G_B) = \text{size of largest indep. set, } \omega(G_B) = \text{maximum depth,}$ then $|E| = O(\alpha(G_B)\omega(G_B)^2).$

Lemma 2

When $c \in C$, expand(c) deletes $\geq \omega(G_B)^2/36$ edges from G_B .

Our result

Greedy algorithm classifies all points using $O(k(P) \log n)$ queries.

 $\alpha(G_B) = \text{size of largest indep. set, } \omega(G_B) = \text{maximum depth,}$ then $|E| = O(\alpha(G_B)\omega(G_B)^2) = O(k(P)\omega(G_B)^2).$

Lemma 2

When $c \in C$, expand(c) deletes $\geq \omega(G_B)^2/36$ edges from G_B .

Our result

Greedy algorithm classifies all points using $O(k(P) \log n)$ queries.

Extending the algorithm to 3D

- $U \subseteq P$ unclassified points. While $U \neq \varnothing$:
 - 1. $\ell^+ =$ halfspace tangent to *B* maximizing $|\ell^+ \cap U|$
 - 2. c =centerpoint of $\ell^+ \cap U$
 - 3. Query oracle using *c*:
 - (A) $c \in C \implies expand(c)$
 - (B) $c \notin C$, h is a separating line \implies remove(h)

- $U \subseteq P$ unclassified points. While $U \neq \varnothing$:
 - 1. $\ell^+ = halfspace tangent to B maximizing |\ell^+ \cap U|$
 - 2. c =centerpoint of $\ell^+ \cap U$
 - 3. Query oracle using *c*:
 - (A) $c \in C \implies expand(c)$
 - (B) $c \notin C$, h is a separating plane \implies remove(h)

When B is expanded, pairs of points do not lose visibility!

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):
 - 1. $G_B = (P, E), (p, q) \in E \iff pq$ avoids B

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):
 - 1. $G_B = (P, E), (p, q) \in E \iff pq$ avoids B
 - 2. Hypergraph $H_B = (P, \mathcal{E}), \{p, q, r\} \in \mathcal{E} \iff$ triangle pqr avoids B

Lemma 1

 $\alpha(G_B) = \text{size of largest indep. set, } \omega = \text{maximum depth, then}$ $|\mathcal{E}(H_B)| = \Theta(\alpha(G_B)\omega^3).$

Lemma 2

When $c \in C$, expand(c) deletes $\geq \omega (G_B)^3/c$ triangles from H_B .

Lemma 1

 $\alpha(G_B) = \text{size of largest indep. set, } \omega = \text{maximum depth, then}$ $|\mathcal{E}(H_B)| = \Theta(\alpha(G_B)\omega^3).$

Lemma 2

When $c \in C$, expand(c) deletes $\geq \omega (G_B)^3/c$ triangles from H_B .

Our result

Greedy algorithm classifies all points using $O(k(P) \log n)$ queries.

An instance optimal algorithm in 2D

• Maintain inner approximation $B \subseteq C$

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen
- Two operations:

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen
- Two operations:
 - 1. Directional climb

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen
- Two operations:
 - 1. Directional climb
 - 2. Pocket splitting

Given direction v:

- ► Compute line ℓ tangent to B, perpendicular to v
- Regular iteration on $\ell^+ \cap U$.

Pockets

Pocket: A connected region of $CH(U \cup B) \setminus B$

Lemma

In $O(\log n)$ oracle queries, can split a pocket Υ , into two pockets $\Upsilon_1, \Upsilon_2, |\Upsilon_i \cap P| \leq (2/3)|\Upsilon \cap P|$.

1. Vertical climb in positive & negative direction of x-axis

1. Vertical climb in positive & negative direction of x-axis

- 1. Vertical climb in positive & negative direction of x-axis
- 2. Obtain a segment $uv \subseteq B \subseteq C$

- 1. Vertical climb in positive & negative direction of x-axis
- 2. Obtain a segment $uv \subseteq B \subseteq C$
- 3. Repeatably split non-empty pockets

- 1. Vertical climb in positive & negative direction of x-axis
- 2. Obtain a segment $uv \subseteq B \subseteq C$
- 3. Repeatably split non-empty pockets

- 1. Vertical climb in positive & negative direction of x-axis
- 2. Obtain a segment $uv \subseteq B \subseteq C$
- 3. Repeatably split non-empty pockets

Analysis idea

 If a pocket contains a vertex v of inner/outer fence, charge creation and splitting of pocket to v

Analysis idea

- If a pocket contains a vertex v of inner/outer fence, charge creation and splitting of pocket to v
- Else pocket does not contain a vertex of inner/outer fence
 all points in pocket are outside C

Analysis idea

- If a pocket contains a vertex v of inner/outer fence, charge creation and splitting of pocket to v
- Else pocket does not contain a vertex of inner/outer fence
 all points in pocket are outside C

Our result

Can classify all points using $O(\sigma(P, C) \log^2 n)$ oracle queries.

Conclusions

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
		$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{in} \log n)$
Verify out	$ F_{\rm out} $	$O(F_{\text{out}} \log n)$

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
		$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\rm out} $	$O(F_{out} \log n)$

Shaving log factors?

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
		$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\rm out} $	$O(F_{out} \log n)$

- Shaving log factors?
- Near-optimal solution in 3D?

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
		$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\rm out} $	$O(F_{out} \log n)$

- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?

Problem	Lowerbound	Upperbound
Classify (2D)	σ(P , C)	$O(k(P) \log n)$
		$O(\sigma(P, C) \log^2 n)$
Classify (3D)	_	$O(k(P) \log n)$
Verify in	$ F_{\rm in} $	$O(F_{\rm in} \log n)$
Verify out	$ F_{\rm out} $	$O(F_{out} \log n)$

- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?
- ► Conjecture: Greedy extends to \mathbb{R}^d ($d \ge 3$), queries depend exponentially on d

- S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. *Space exploration via proximity search*. *Discrete Comput. Geom.*, 56(2): 357–376, 2016.
- F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity probing algorithm for metrology. Int. Conf. on Automation Science and Engineering, CASE 2013, 342–349, 2013.
- D. Angluin. Queries and concept learning. Machine Learning, 2(4): 319–342, 1987.