Active Learning a Convex Body in Low
Dimensions

Sariel Har-Peled, Mitchell Jones and Rahul Saladi
UIUC Theory Seminar, November 11, 2019

1/30

An innocent problem

Problem
Input: P C R?, oracle for unknown convex body C.

Oracle: Query g € R?, returns true <= q € C.

Goal: Compute PN C using fewest number of oracle queries.

2/30

Motivation: Active learning

v

Input space X

v

Learner data: X1, ..., X, € X (without labels)

» Learner can query oracle for label of any g € X

v

Build classifier using few queries

v

What queries to choose?

3/30

Bad news

» Worst case: query all points

» Question: More interesting model to study?

4/30

Modified problem

Problem
Input: P C R?, oracle for unknown convex body C.

Oracle: Separation oracle

Goal: Compute PN C using fewest number of oracle queries.

5/30

» Slightly stronger model

6/30

» Slightly stronger model
» Separation oracles are well-known (OR)

6/30

» Slightly stronger model

» Separation oracles are well-known (OR)
» Computational problems with oracle access:

6/30

» Slightly stronger model

» Separation oracles are well-known (OR)
» Computational problems with oracle access:
» Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]

6/30

» Slightly stronger model

» Separation oracles are well-known (OR)
» Computational problems with oracle access:

» Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
> Proximity probe [Panahi, Adler, et al., 2013]

6/30

v

Slightly stronger model
» Separation oracles are well-known (OR)

v

Computational problems with oracle access:

» Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
> Proximity probe [Panahi, Adler, et al., 2013]

» Minimizing communication complexity

6/30

One approach: PAC learning

» Allow error in classification

7/30

One approach: PAC learning

» Allow error in classification
» Algorithm:

7/30

One approach: PAC learning

» Allow error in classification
» Algorithm:
1. Randomly sample input

7/30

One approach: PAC learning

» Allow error in classification
» Algorithm:

1. Randomly sample input
2. Obtain labels for sample

7/30

One approach: PAC learning

» Allow error in classification
» Algorithm:
1. Randomly sample input

2. Obtain labels for sample
3. Classify sample

7/30

One approach: PAC learning

» Allow error in classification
» Algorithm:
1. Randomly sample input

2. Obtain labels for sample
3. Classify sample

» Size of sample?

7/30

One approach: PAC learning

» Misclassified points = symmetric difference of learned and
true classifier

8/30

One approach: PAC learning

» Misclassified points = symmetric difference of learned and
true classifier
» Halfplane = symmetric difference is a wedge

8/30

One approach: PAC learning

» Misclassified points = symmetric difference of learned and
true classifier

» Halfplane = symmetric difference is a wedge

» Wedge has finite VC dimension = random sample of
size~ O(e 'loge™") = en error

8/30

One approach: PAC learning

| 4

Misclassified points = symmetric difference of learned and
true classifier

Halfplane = symmetric difference is a wedge

Wedge has finite VC dimension = random sample of
size~ O(e 'loge™") = en error

Scheme fails for arbitrary convex regions

8/30

Hard vs. easy instances

» Worst case: query all points

9/30

Hard vs. easy instances

» Worst case: query all points

» Goal: design instance sensitive algorithms

9/30

» F;, = convex polygon with fewest vertices s.t. F;,, C€ C and
CNP=FuNP.

10/30

» F;, = convex polygon with fewest vertices s.t. F;,, C€ C and
CNP=F,NnP.
Fout = convex polygon with fewest vertices s.t. C C Foyut
and CNP = Fy NP

10/30

» Fi, = convex polygon with fewest vertices s.t. F;, € C and
CNP=FnNP.
Fout = convex polygon with fewest vertices s.t. C C Foyy
and CNP=Fy NP

» Separation price o(P, C) = |Fiu| + |Fout!-

10/30

» F;, = convex polygon with fewest vertices s.t. F;,, C€ C and
CNP=FnNP.
» Fout = convex polygon with fewest vertices s.t. C C Foyut
and CNP=F,NP.
» Separation price o(P, C) = |Fiu| + |Fout-
Lemma
Any algorithm must make at least o(P, C) oracle queries.

10/30

Lemma
Any algorithm must make at least o(P, C) oracle queries.

Proof.

11/30

Lemma
Any algorithm must make at least o(P, C) oracle queries.

Proof.
» Q: set of queries, Qi, = CNQ, K = CH(Q;,)

11/30

Lemma
Any algorithm must make at least o(P, C) oracle queries.

Proof.
» Q: set of queries, Qi, = CNQ, K = CH(Q;,)
» KCCandKNnP=CnP

11/30

Lemma
Any algorithm must make at least o(P, C) oracle queries.
Proof.
» Q: set of queries, Q;, = CNQ, K =CH(Qi,)
» KCCandKNnP=CnNP
= |Qu| = K| > |Fial O

11/30

Problem Lowerbound | Upperbound

Classify (2D) o(P, C) O(R(P) log n) (1)

(1) R(P) = largest # of pts of P in convex position

12/30

Problem Lowerbound | Upperbound
Classify (2D) a(P, C) O(R(P) logn) ()
Classify (2D) o(P, C) O(o(P, C) log® n)

(1) R(P) = largest # of pts of P in convex position

12/30

Problem Lowerbound | Upperbound

Classify (2D) a(P, C) O(R(P) logn) ()
Classify (2D) o(P,C) O(o(P, C) log? n)
Classify (3D) — O(R(P) logn) ()

(1) R(P) = largest # of pts of P in convex position

12/30

Problem Lowerbound | Upperbound
Classify (2D) o(P, C) O(R(P) log n) (1)
Classify (2D) o(P, C) O(o(P, C) log® n)
Classify (3D) — O(R(P) log n) (1)
Verify in (2D) |Fin| O(|Fin|log n)

(1) R(P) = largest # of pts of P in convex position

12/30

Problem Lowerbound | Upperbound
Classify (2D) o(P, C) O(R(P) log n) (1)
Classify (2D) o(P, C) O(o(P, C) log® n)
Classify (3D) — O(R(P) log n) (1)
Verify in (2D) |Fin| O(|Fin|log n)
Verify out (2D) IFoutl O(|Foutllog n) (1)

(1) R(P) = largest # of pts of P in convex position
(1) Randomized, w.h.p

12/30

Problem Lowerbound | Upperbound
Classify (2D) o(P, C) O(k(P) logn) (1)
Classify (2D) o(P, C) O(o(P, C) log® n)
Classify (3D) — O(R(P) log n) (1)
Verify in (2D) |Fin| O(|Fin|log n)
Verify out (2D) IFoutl O(|Foutllog n) (1)

(1) R(P) = largest # of pts of P in convex position
(1) Randomized, w.h.p

12/30

First attempt: A greedy algorithm

The greedy algorithm: preliminaries

» Maintain approximation B C C

13/30

The greedy algorithm: preliminaries

» Maintain approximation B C C
» Operations:

13/30

The greedy algorithm: preliminaries

» Maintain approximation B C C
» Operations:

1. expand(p): Update B = CH(B + p)
2. remove({"): Classify points PN {" as outside C

13/30

The greedy algorithm: preliminaries

» Maintain approximation B C C
» Operations:
1. expand(p): Update B = CH(B + p)
2. remove({"): Classify points PN ¢* as outside C
» ¢ € R?is a centerpoint for P if for all halfspaces ¢
celt = |PNnLT| > |P|/3.

13/30

The greedy algorithm

U C P unclassified points. While U +# &:

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. L7 = halfspace tangent to B maximizing |[¢* N U]

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. L7 = halfspace tangent to B maximizing |[¢* N U]

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. L7 = halfspace tangent to B maximizing |[¢* N U]
2. ¢ = centerpointof £t NU

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. L7 = halfspace tangent to B maximizing |[¢* N U]
2. ¢ = centerpointof £t NU

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. L7 = halfspace tangent to B maximizing |[¢* N U]

2. ¢ = centerpointof £t NU
3. Query oracle using ¢:

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. L7 = halfspace tangent to B maximizing |[¢* N U]
2. ¢ = centerpointof £t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. £+ = halfspace tangent to B maximizing [{* N U]
2. ¢ = centerpointof £t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)

(B) < ¢ C, his a separating line = remove(h)

14/30

The greedy algorithm

U C P unclassified points. While U +# &:

1. £+ = halfspace tangent to B maximizing [{* N U]
2. ¢ = centerpointof £t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)

(B) < ¢ C, his a separating line = remove(h)

14/30

Animation

15/30

Analysis

» Count visible pairs of points

16/30

Analysis

» Count visible pairs of points
» In each iteration:

16/30

Analysis

» Count visible pairs of points
» In each iteration:
(A) Pairs lose visibility

16/30

Analysis

» Count visible pairs of points
» In each iteration:

(A) Pairs lose visibility
(B) Classify points

16/30

Analysis

» Count visible pairs of points
» In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma

Number of visible pairs decrease by a
(roughly) constant fraction in each —~——
iteration.

16/30

Two interpretations of the visibility graph

Visibility graph Gg = (P, E):

p € P has interval I(p)

(p.q) €E < paNB=2 (p.q) €E < I(p)NI(q) # 2

17/30

Two observations

Observations: (p,q) €E < pgNB=o
1. Q C Pindependent set in
Gg = Qs in convex
position

18/30

Two observations

Observations: (p,q) €E < pgNB=o
1. Q C Pindependent set in
Gg = Qs in convex

position

2. Q C Pand B are linearly
separable = Qclique in
Gg

18/30

Number of edges in Gp

Lemma 1
«(Gg) = size of largest indep.

set, w(Gg) = maximum depth,

then |E| = O((Gg)w(Gp)?).

p € P has interval I(p)
(p,q) €E < I(p q) #92

19/30

How many edges are removed?

» Compute halfspace {* tangent to B maximizing [¢* N U]

20/30

How many edges are removed?

» Compute halfspace {* tangent to B maximizing [¢* N U]
» Setm =" NU| > w(Gg)

20/30

How many edges are removed?

» Compute halfspace {* tangent to B maximizing [¢* N U]
» Setm =" NU| > w(Gg)
» ¢ = centerpointof {* NU

20/30

How many edges are removed?

» Compute halfspace {* tangent to B maximizing [¢* N U]
» Setm =" NU| > w(Gg)
» ¢ = centerpointof {* NU

Lemma 2

When < € C, expand(<) deletes > w(Gg)?/36 edges from Gg.

20/30

Putting it all together

Lemma 1
«(Gg) = size of largest indep. set, w(Gg) = maximum depth,
then |E| = O((Gg)w(Gg)?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)?/36 edges from Gg.

21/30

Putting it all together

Lemma 1
«(Gg) = size of largest indep. set, w(Gg) = maximum depth,
then |E| = O((Gg)w(Gg)?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)?/36 edges from Gg.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.

21/30

Putting it all together

Lemma 1
«(Gg) = size of largest indep. set, w(Gg) = maximum depth,
then |E| = O((Gg)w(Gg)?) = O(R(P)w(Gp)?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)?/36 edges from Gg.

Our result

Greedy algorithm classifies all points using O(k(P) log n)
queries.

21/30

Extending the algorithm to 3D

Extending the algorithm

U C P unclassified points. While U # @:

1. ¢ = halfspace tangent to B maximizing [¢{* N U]

2. ¢ = centerpointof {t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)
(B) < ¢ C, his a separating line = remove(h)

22/30

Extending the algorithm

U C P unclassified points. While U # @:

1. ¢ = halfspace tangent to B maximizing [¢{* N U]

2. ¢ = centerpointof {t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)
(B) < ¢ C, his a separating plane —> remove(h)

22/30

Extending the analysis

» When B is expanded, pairs of points do not lose visibility!

23/30

Extending the analysis

» When B is expanded, pairs of points do not lose visibility!

» Need to consider triples of points

23/30

Extending the analysis

» When B is expanded, pairs of points do not lose visibility!

» Need to consider triples of points
» Maintain two graphs (w.r.t B):

23/30

Extending the analysis

» When B is expanded, pairs of points do not lose visibility!

» Need to consider triples of points
» Maintain two graphs (w.r.t B):
1. Gg = (P,E), (p,q) € E < pqg avoids B

23/30

Extending the analysis

» When B is expanded, pairs of points do not lose visibility!

» Need to consider triples of points
» Maintain two graphs (w.r.t B):

1. Gg = (P,E), (p,q) € E < pqg avoids B
2. Hypergraph Hg = (P, €),{p,q,r} € & <= triangle pqr
avoids B

23/30

Everything still works

Lemma 1

«(Gg) = size of largest indep. set, w = maximum depth, then
€(Hg)| = O(at(Gg)w?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)3/c triangles from Hp.

24/30

Everything still works

Lemma 1

«(Gg) = size of largest indep. set, w = maximum depth, then
€(Hg)| = O(at(Gg)w?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)3/c triangles from Hp.

Our result

Greedy algorithm classifies all points using O(k(P) log n)
queries.

24/30

An instance optimal algorithm in 2D

Preliminaries

» Maintain inner approximation B C C

25/30

Preliminaries

» Maintain inner approximation B C C

» Query is more carefully chosen

25/30

Preliminaries

» Maintain inner approximation B C C

» Query is more carefully chosen
» Two operations:

25/30

Preliminaries

» Maintain inner approximation B C C

» Query is more carefully chosen
» Two operations:
1. Directional climb

25/30

Preliminaries

» Maintain inner approximation B C C

» Query is more carefully chosen
» Two operations:

1. Directional climb
2. Pocket splitting

25/30

Directional climbs

Given direction v:

» Compute line £ tangent to B, perpendicular to v
» Regular iteration on (N U.

v t h
—>
[o]
o
~ (o]
\\ -
o ~ o
B o714
7
- o
P (o]

26/30

Pocket: A connected region of CH(UU B) \ B

Lemma
In O(log n) oracle queries, can split a pocket Y, into two
pockets Y1, Y, |V, NP < (2/3)[Y NP

27/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis

o o o
© o
o
o o o o © o ©
o o fe)
o o o (@]

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segmentuv C BC C

o o o
© o
o
o o o o © o ©
o o fe)
o o o (@]

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segmentuv C BC C
3. Repeatably split non-empty pockets

o o o
© o
o
o o o o © o ©
o o fe)
o o o (@]

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segmentuv C BC C
3. Repeatably split non-empty pockets

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segmentuv C BC C
3. Repeatably split non-empty pockets

28/30

Analysis idea

» If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

29/30

Analysis idea

» If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

» Else pocket does not contain a vertex of inner/outer fence
— all points in pocket are outside C

29/30

Analysis idea

» If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

» Else pocket does not contain a vertex of inner/outer fence
— all points in pocket are outside C

Our result
Can classify all points using O(o(P, C) log® n) oracle queries.

29/30

Conclusions

Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)

30/30

Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)

» Shaving log factors?

30/30

Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)

» Shaving log factors?
» Near-optimal solution in 3D?

30/30

Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)

» Shaving log factors?
» Near-optimal solution in 3D?
» Higher dimensions?

30/30

Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)

v

Shaving log factors?

v

Near-optimal solution in 3D?

v

Higher dimensions?

v

Conjecture: Greedy extends to RY (d > 3), queries depend
exponentially on d

30/30

References i

B

S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space
exploration via proximity search. Discrete Comput. Geom., 56(2):
357-376, 2016

F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An
efficient proximity probing algorithm for metrology. Int. Conf.
on Automation Science and Engineering, CASE 2013, 342-349,
2013.

D. Angluin. Queries and concept learning. Machine Learning,
2(4): 319-342, 1987.

http://dx.doi.org/10.1007/s00454-016-9801-7
http://dx.doi.org/10.1007/s00454-016-9801-7
http://dx.doi.org/10.1109/CoASE.2013.6653995
http://dx.doi.org/10.1109/CoASE.2013.6653995
http://dx.doi.org/10.1007/BF00116828

	First attempt: A greedy algorithm
	Extending the algorithm to 3D
	An instance optimal algorithm in 2D
	Conclusions

