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An innocent problem

Problem
Input: P C R?, oracle for unknown convex body C.

Oracle: Query g € R?, returns true <= q € C.

Goal: Compute PN C using fewest number of oracle queries.
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Motivation: Active learning

v

Input space X

v

Learner data: X1, ..., X, € X (without labels)

» Learner can query oracle for label of any g € X

v

Build classifier using few queries

v

What queries to choose?
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Bad news

» Worst case: query all points

» Question: More interesting model to study?
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Modified problem

Problem
Input: P C R?, oracle for unknown convex body C.

Oracle: Separation oracle

Goal: Compute PN C using fewest number of oracle queries.
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» Slightly stronger model
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v

Slightly stronger model
» Separation oracles are well-known (OR)

v

Computational problems with oracle access:

» Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
> Proximity probe [Panahi, Adler, et al., 2013]

» Minimizing communication complexity
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One approach: PAC learning

» Allow error in classification
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One approach: PAC learning

» Allow error in classification
» Algorithm:
1. Randomly sample input

2. Obtain labels for sample
3. Classify sample

» Size of sample?
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One approach: PAC learning

» Misclassified points = symmetric difference of learned and
true classifier
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One approach: PAC learning

| 4

Misclassified points = symmetric difference of learned and
true classifier

Halfplane = symmetric difference is a wedge

Wedge has finite VC dimension = random sample of
size~ O(e 'loge™") = en error

Scheme fails for arbitrary convex regions
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Hard vs. easy instances

» Worst case: query all points
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Hard vs. easy instances

» Worst case: query all points

» Goal: design instance sensitive algorithms
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» F;, = convex polygon with fewest vertices s.t. F;,, C€ C and
CNP=FuNP.
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» Fout = convex polygon with fewest vertices s.t. C C Foyut
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Lemma
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Lemma
Any algorithm must make at least o(P, C) oracle queries.
Proof.
» Q: set of queries, Q;, = CNQ, K =CH(Qi,)
» KCCandKNnP=CnNP
= |Qu| = K| > |Fial O
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Problem Lowerbound | Upperbound

Classify (2D) o(P, C) O(R(P) log n) (1)

(1) R(P) = largest # of pts of P in convex position
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Problem Lowerbound | Upperbound
Classify (2D) o(P, C) O(k(P) logn) (1)
Classify (2D) o(P, C) O(o(P, C) log® n)
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First attempt: A greedy algorithm




The greedy algorithm: preliminaries

» Maintain approximation B C C
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The greedy algorithm: preliminaries

» Maintain approximation B C C
» Operations:
1. expand(p): Update B = CH(B + p)
2. remove({"): Classify points PN ¢* as outside C
» ¢ € R?is a centerpoint for P if for all halfspaces ¢
celt = |PNnLT| > |P|/3.
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The greedy algorithm

U C P unclassified points. While U +# &:
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Animation
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Analysis

» Count visible pairs of points
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Analysis

» Count visible pairs of points
» In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma

Number of visible pairs decrease by a
(roughly) constant fraction in each —~——
iteration.
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Two interpretations of the visibility graph

Visibility graph Gg = (P, E):

p € P has interval I(p)

(p.q) €E < paNB=2 (p.q) €E < I(p)NI(q) # 2
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Two observations

Observations: (p,q) €E < pgNB=o
1. Q C Pindependent set in
Gg = Qs in convex
position

18/30



Two observations

Observations: (p,q) €E < pgNB=o
1. Q C Pindependent set in
Gg = Qs in convex

position

2. Q C Pand B are linearly
separable = Qclique in
Gg
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Number of edges in Gp

Lemma 1
«(Gg) = size of largest indep.

set, w(Gg) = maximum depth,

then |E| = O((Gg)w(Gp)?).

p € P has interval I(p)
(p,q) €E < I(p q) #92
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How many edges are removed?

» Compute halfspace {* tangent to B maximizing [¢* N U]
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How many edges are removed?

» Compute halfspace {* tangent to B maximizing [¢* N U]
» Setm =" NU| > w(Gg)
» ¢ = centerpointof {* NU

Lemma 2

When < € C, expand(<) deletes > w(Gg)?/36 edges from Gg.
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Putting it all together

Lemma 1
«(Gg) = size of largest indep. set, w(Gg) = maximum depth,
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Putting it all together

Lemma 1
«(Gg) = size of largest indep. set, w(Gg) = maximum depth,
then |E| = O((Gg)w(Gg)?) = O(R(P)w(Gp)?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)?/36 edges from Gg.

Our result

Greedy algorithm classifies all points using O(k(P) log n)
queries.
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Extending the algorithm to 3D




Extending the algorithm

U C P unclassified points. While U # @:

1. ¢ = halfspace tangent to B maximizing [¢{* N U]

2. ¢ = centerpointof {t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)
(B) < ¢ C, his a separating line = remove(h)
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1. ¢ = halfspace tangent to B maximizing [¢{* N U]

2. ¢ = centerpointof {t NU
3. Query oracle using ¢:

(A) ¢ € C = expand(<)
(B) < ¢ C, his a separating plane —> remove(h)
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Extending the analysis

» When B is expanded, pairs of points do not lose visibility!
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Extending the analysis

» When B is expanded, pairs of points do not lose visibility!

» Need to consider triples of points
» Maintain two graphs (w.r.t B):

1. Gg = (P,E), (p,q) € E < pqg avoids B
2. Hypergraph Hg = (P, €),{p,q,r} € & <= triangle pqr
avoids B
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Everything still works

Lemma 1

«(Gg) = size of largest indep. set, w = maximum depth, then
€(Hg)| = O(at(Gg)w?).

Lemma 2
When < € C, expand(<) deletes > w(Gg)3/c triangles from Hp.
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An instance optimal algorithm in 2D




Preliminaries

» Maintain inner approximation B C C
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» Maintain inner approximation B C C

» Query is more carefully chosen
» Two operations:

1. Directional climb
2. Pocket splitting
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Directional climbs

Given direction v:

» Compute line £ tangent to B, perpendicular to v
» Regular iteration on (N U.

v t h
—>
[o]
o
~ (o]
\\ -
o ~ o
B o714
7
- o
P (o]
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Pocket: A connected region of CH(UU B) \ B

Lemma
In O(log n) oracle queries, can split a pocket Y, into two
pockets Y1, Y, |V, NP < (2/3)[Y NP
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Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
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Analysis idea

» If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v
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Analysis idea

» If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

» Else pocket does not contain a vertex of inner/outer fence
— all points in pocket are outside C

Our result
Can classify all points using O(o(P, C) log® n) oracle queries.
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Conclusions




Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)
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Conclusion & open problems

Problem Lowerbound | Upperbound
O(R(P) log n)
O(a(P, C) log? n)

Classify (2D) o(P, C)

Classify (3D) — O(R(P) logn)
Verify in |Fin| O(|Fin||0gn)
Verify out |Fout| O(|Fout| log n)

v

Shaving log factors?

v

Near-optimal solution in 3D?

v

Higher dimensions?

v

Conjecture: Greedy extends to RY (d > 3), queries depend
exponentially on d
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