
Active Learning a Convex Body in Low
Dimensions

Sariel Har-Peled, Mitchell Jones and Rahul Saladi
UIUC Theory Seminar, November 11, 2019

1/30

An innocent problem

Problem
Input: P ⊂ R2, oracle for unknown convex body C.

Oracle: Query q ∈ R2, returns true ⇐⇒ q ∈ C.

Goal: Compute P ∩ C using fewest number of oracle queries.

2/30

Motivation: Active learning

I Input space X
I Learner data: x1, . . . , xn ∈ X (without labels)
I Learner can query oracle for label of any q ∈ X
I Build classifier using few queries
I What queries to choose?

3/30

Bad news

I Worst case: query all points
I Question: More interesting model to study?

4/30

Modified problem

Problem
Input: P ⊂ R2, oracle for unknown convex body C.

Oracle: Separation oracle

q

C q C

`

Goal: Compute P ∩ C using fewest number of oracle queries.

5/30

Motivation

I Slightly stronger model

I Separation oracles are well-known (OR)
I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
I Proximity probe [Panahi, Adler, et al., 2013]

I Minimizing communication complexity

6/30

Motivation

I Slightly stronger model
I Separation oracles are well-known (OR)

I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
I Proximity probe [Panahi, Adler, et al., 2013]

I Minimizing communication complexity

6/30

Motivation

I Slightly stronger model
I Separation oracles are well-known (OR)
I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
I Proximity probe [Panahi, Adler, et al., 2013]

I Minimizing communication complexity

6/30

Motivation

I Slightly stronger model
I Separation oracles are well-known (OR)
I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]

I Proximity probe [Panahi, Adler, et al., 2013]
I Minimizing communication complexity

6/30

Motivation

I Slightly stronger model
I Separation oracles are well-known (OR)
I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
I Proximity probe [Panahi, Adler, et al., 2013]

I Minimizing communication complexity

6/30

Motivation

I Slightly stronger model
I Separation oracles are well-known (OR)
I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
I Proximity probe [Panahi, Adler, et al., 2013]

I Minimizing communication complexity

6/30

One approach: PAC learning

I Allow error in classification

I Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

I Size of sample?

7/30

One approach: PAC learning

I Allow error in classification
I Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

I Size of sample?

7/30

One approach: PAC learning

I Allow error in classification
I Algorithm:

1. Randomly sample input

2. Obtain labels for sample
3. Classify sample

I Size of sample?

7/30

One approach: PAC learning

I Allow error in classification
I Algorithm:

1. Randomly sample input
2. Obtain labels for sample

3. Classify sample
I Size of sample?

7/30

One approach: PAC learning

I Allow error in classification
I Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

I Size of sample?

7/30

One approach: PAC learning

I Allow error in classification
I Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

I Size of sample?

7/30

One approach: PAC learning

I Misclassified points = symmetric difference of learned and
true classifier

I Halfplane =⇒ symmetric difference is a wedge
I Wedge has finite VC dimension =⇒ random sample of
size ≈ O(ε−1 log ε−1) =⇒ εn error

I Scheme fails for arbitrary convex regions

8/30

One approach: PAC learning

I Misclassified points = symmetric difference of learned and
true classifier

I Halfplane =⇒ symmetric difference is a wedge

I Wedge has finite VC dimension =⇒ random sample of
size ≈ O(ε−1 log ε−1) =⇒ εn error

I Scheme fails for arbitrary convex regions

8/30

One approach: PAC learning

I Misclassified points = symmetric difference of learned and
true classifier

I Halfplane =⇒ symmetric difference is a wedge
I Wedge has finite VC dimension =⇒ random sample of
size ≈ O(ε−1 log ε−1) =⇒ εn error

I Scheme fails for arbitrary convex regions

8/30

One approach: PAC learning

I Misclassified points = symmetric difference of learned and
true classifier

I Halfplane =⇒ symmetric difference is a wedge
I Wedge has finite VC dimension =⇒ random sample of
size ≈ O(ε−1 log ε−1) =⇒ εn error

I Scheme fails for arbitrary convex regions

8/30

Hard vs. easy instances

I Worst case: query all points

I Goal: design instance sensitive algorithms

9/30

Hard vs. easy instances

I Worst case: query all points
I Goal: design instance sensitive algorithms

9/30

A lower bound

I Fin = convex polygon with fewest vertices s.t. Fin ⊆ C and
C ∩ P = Fin ∩ P.

I Fout = convex polygon with fewest vertices s.t. C ⊆ Fout

and C ∩ P = Fout ∩ P.
I Separation price σ(P, C) = |Fin|+ |Fout|.

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

10/30

A lower bound

I Fin = convex polygon with fewest vertices s.t. Fin ⊆ C and
C ∩ P = Fin ∩ P.

I Fout = convex polygon with fewest vertices s.t. C ⊆ Fout

and C ∩ P = Fout ∩ P.

I Separation price σ(P, C) = |Fin|+ |Fout|.

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

10/30

A lower bound

I Fin = convex polygon with fewest vertices s.t. Fin ⊆ C and
C ∩ P = Fin ∩ P.

I Fout = convex polygon with fewest vertices s.t. C ⊆ Fout

and C ∩ P = Fout ∩ P.
I Separation price σ(P, C) = |Fin|+ |Fout|.

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

10/30

A lower bound

I Fin = convex polygon with fewest vertices s.t. Fin ⊆ C and
C ∩ P = Fin ∩ P.

I Fout = convex polygon with fewest vertices s.t. C ⊆ Fout

and C ∩ P = Fout ∩ P.
I Separation price σ(P, C) = |Fin|+ |Fout|.

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

10/30

A lower bound

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

Proof.

I Q: set of queries, Qin = C ∩ Q, K = CH(Qin)

I K ⊆ C and K ∩ P = C ∩ P
=⇒ |Qin| > |K| > |Fin|

11/30

A lower bound

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

Proof.
I Q: set of queries, Qin = C ∩ Q, K = CH(Qin)

I K ⊆ C and K ∩ P = C ∩ P
=⇒ |Qin| > |K| > |Fin|

11/30

A lower bound

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

Proof.
I Q: set of queries, Qin = C ∩ Q, K = CH(Qin)

I K ⊆ C and K ∩ P = C ∩ P

=⇒ |Qin| > |K| > |Fin|

11/30

A lower bound

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

Proof.
I Q: set of queries, Qin = C ∩ Q, K = CH(Qin)

I K ⊆ C and K ∩ P = C ∩ P
=⇒ |Qin| > |K| > |Fin|

11/30

Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30

Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30

Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30

Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30

Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position
(‡) Randomized, w.h.p

12/30

Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position
(‡) Randomized, w.h.p

12/30

First attempt: A greedy algorithm

The greedy algorithm: preliminaries

I Maintain approximation B ⊆ C

I Operations:

1. expand(p): Update B = CH(B+ p)
2. remove(`+): Classify points P ∩ `+ as outside C

I c ∈ R2 is a centerpoint for P if for all halfspaces `+:
c ∈ `+ =⇒ |P ∩ `+| > |P|/3.

13/30

The greedy algorithm: preliminaries

I Maintain approximation B ⊆ C
I Operations:

1. expand(p): Update B = CH(B+ p)
2. remove(`+): Classify points P ∩ `+ as outside C

I c ∈ R2 is a centerpoint for P if for all halfspaces `+:
c ∈ `+ =⇒ |P ∩ `+| > |P|/3.

13/30

The greedy algorithm: preliminaries

I Maintain approximation B ⊆ C
I Operations:

1. expand(p): Update B = CH(B+ p)
2. remove(`+): Classify points P ∩ `+ as outside C

I c ∈ R2 is a centerpoint for P if for all halfspaces `+:
c ∈ `+ =⇒ |P ∩ `+| > |P|/3.

C

Bp

`+

C

B

13/30

The greedy algorithm: preliminaries

I Maintain approximation B ⊆ C
I Operations:

1. expand(p): Update B = CH(B+ p)
2. remove(`+): Classify points P ∩ `+ as outside C

I c ∈ R2 is a centerpoint for P if for all halfspaces `+:
c ∈ `+ =⇒ |P ∩ `+| > |P|/3.

C

Bp

`+

C

B

13/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|

2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|

2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U

3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U

3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)

(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

14/30

Animation

15/30

Analysis

I Count visible pairs of points

I In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma
Number of visible pairs decrease by a
(roughly) constant fraction in each
iteration.

B

16/30

Analysis

I Count visible pairs of points
I In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma
Number of visible pairs decrease by a
(roughly) constant fraction in each
iteration.

B

16/30

Analysis

I Count visible pairs of points
I In each iteration:

(A) Pairs lose visibility

(B) Classify points

Lemma
Number of visible pairs decrease by a
(roughly) constant fraction in each
iteration.

B

16/30

Analysis

I Count visible pairs of points
I In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma
Number of visible pairs decrease by a
(roughly) constant fraction in each
iteration.

B

16/30

Analysis

I Count visible pairs of points
I In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma
Number of visible pairs decrease by a
(roughly) constant fraction in each
iteration.

B

16/30

Two interpretations of the visibility graph

Visibility graph GB = (P, E):

(p,q) ∈ E ⇐⇒ pq ∩ B = ∅

B

p ∈ P has interval I(p)
(p,q) ∈ E ⇐⇒ I(p) ∩ I(q) 6= ∅

C p2

p3

p4

p1

B

17/30

Two observations

Observations:
1. Q ⊆ P independent set in
GB =⇒ Q is in convex
position

2. Q ⊆ P and B are linearly
separable =⇒ Q clique in
GB

(p,q) ∈ E ⇐⇒ pq ∩ B = ∅

B

18/30

Two observations

Observations:
1. Q ⊆ P independent set in
GB =⇒ Q is in convex
position

2. Q ⊆ P and B are linearly
separable =⇒ Q clique in
GB

(p,q) ∈ E ⇐⇒ pq ∩ B = ∅

B

18/30

Number of edges in GB

Lemma 1
α(GB) = size of largest indep.
set, ω(GB) = maximum depth,
then |E| = O(α(GB)ω(GB)2).

p ∈ P has interval I(p)
(p,q) ∈ E ⇐⇒ I(p) ∩ I(q) 6= ∅

C p2

p3

p4

p1

B

19/30

How many edges are removed?

I Compute halfspace `+ tangent to B maximizing |`+ ∩ U|

I Set m = |`+ ∩ U| > ω(GB)
I c= centerpoint of `+ ∩ U

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

20/30

How many edges are removed?

I Compute halfspace `+ tangent to B maximizing |`+ ∩ U|
I Set m = |`+ ∩ U| > ω(GB)

I c= centerpoint of `+ ∩ U

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

20/30

How many edges are removed?

I Compute halfspace `+ tangent to B maximizing |`+ ∩ U|
I Set m = |`+ ∩ U| > ω(GB)
I c= centerpoint of `+ ∩ U

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

20/30

How many edges are removed?

I Compute halfspace `+ tangent to B maximizing |`+ ∩ U|
I Set m = |`+ ∩ U| > ω(GB)
I c= centerpoint of `+ ∩ U

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

20/30

Putting it all together

Lemma 1
α(GB) = size of largest indep. set, ω(GB) = maximum depth,
then |E| = O(α(GB)ω(GB)2).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.

21/30

Putting it all together

Lemma 1
α(GB) = size of largest indep. set, ω(GB) = maximum depth,
then |E| = O(α(GB)ω(GB)2).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.

21/30

Putting it all together

Lemma 1
α(GB) = size of largest indep. set, ω(GB) = maximum depth,
then |E| = O(α(GB)ω(GB)2) = O(k(P)ω(GB)2).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.

21/30

Extending the algorithm to 3D

Extending the algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)

22/30

Extending the algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating plane =⇒ remove(h)

22/30

Extending the analysis

I When B is expanded, pairs of points do not lose visibility!

I Need to consider triples of points
I Maintain two graphs (w.r.t B):

1. GB = (P, E), (p,q) ∈ E ⇐⇒ pq avoids B
2. Hypergraph HB = (P,E), {p,q, r} ∈ E ⇐⇒ triangle pqr
avoids B

23/30

Extending the analysis

I When B is expanded, pairs of points do not lose visibility!
I Need to consider triples of points

I Maintain two graphs (w.r.t B):

1. GB = (P, E), (p,q) ∈ E ⇐⇒ pq avoids B
2. Hypergraph HB = (P,E), {p,q, r} ∈ E ⇐⇒ triangle pqr
avoids B

23/30

Extending the analysis

I When B is expanded, pairs of points do not lose visibility!
I Need to consider triples of points
I Maintain two graphs (w.r.t B):

1. GB = (P, E), (p,q) ∈ E ⇐⇒ pq avoids B
2. Hypergraph HB = (P,E), {p,q, r} ∈ E ⇐⇒ triangle pqr
avoids B

23/30

Extending the analysis

I When B is expanded, pairs of points do not lose visibility!
I Need to consider triples of points
I Maintain two graphs (w.r.t B):

1. GB = (P, E), (p,q) ∈ E ⇐⇒ pq avoids B

2. Hypergraph HB = (P,E), {p,q, r} ∈ E ⇐⇒ triangle pqr
avoids B

23/30

Extending the analysis

I When B is expanded, pairs of points do not lose visibility!
I Need to consider triples of points
I Maintain two graphs (w.r.t B):

1. GB = (P, E), (p,q) ∈ E ⇐⇒ pq avoids B
2. Hypergraph HB = (P,E), {p,q, r} ∈ E ⇐⇒ triangle pqr
avoids B

23/30

Everything still works

Lemma 1
α(GB) = size of largest indep. set, ω = maximum depth, then
|E(HB)| = Θ(α(GB)ω3).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)3/c triangles from HB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.

24/30

Everything still works

Lemma 1
α(GB) = size of largest indep. set, ω = maximum depth, then
|E(HB)| = Θ(α(GB)ω3).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)3/c triangles from HB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.

24/30

An instance optimal algorithm in 2D

Preliminaries

I Maintain inner approximation B ⊆ C

I Query is more carefully chosen
I Two operations:

1. Directional climb
2. Pocket splitting

25/30

Preliminaries

I Maintain inner approximation B ⊆ C
I Query is more carefully chosen

I Two operations:

1. Directional climb
2. Pocket splitting

25/30

Preliminaries

I Maintain inner approximation B ⊆ C
I Query is more carefully chosen
I Two operations:

1. Directional climb
2. Pocket splitting

25/30

Preliminaries

I Maintain inner approximation B ⊆ C
I Query is more carefully chosen
I Two operations:

1. Directional climb

2. Pocket splitting

25/30

Preliminaries

I Maintain inner approximation B ⊆ C
I Query is more carefully chosen
I Two operations:

1. Directional climb
2. Pocket splitting

25/30

Directional climbs

Given direction v:

I Compute line ` tangent to B, perpendicular to v
I Regular iteration on `+ ∩ U.

l

B

v

q

h

26/30

Pockets

Pocket: A connected region of CH(U ∪ B) \ B

B B

Lemma
In O(log n) oracle queries, can split a pocket Υ, into two
pockets Υ1,Υ2, |Υi ∩ P| 6 (2/3)|Υ ∩ P|.

27/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis

2. Obtain a segment uv ⊆ B ⊆ C
3. Repeatably split non-empty pockets

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis

2. Obtain a segment uv ⊆ B ⊆ C
3. Repeatably split non-empty pockets

Bu v

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segment uv ⊆ B ⊆ C

3. Repeatably split non-empty pockets

Bu v

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segment uv ⊆ B ⊆ C
3. Repeatably split non-empty pockets

Bu v

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segment uv ⊆ B ⊆ C
3. Repeatably split non-empty pockets

Bu v

28/30

Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis
2. Obtain a segment uv ⊆ B ⊆ C
3. Repeatably split non-empty pockets

Bu v

28/30

Analysis idea

I If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

I Else pocket does not contain a vertex of inner/outer fence
=⇒ all points in pocket are outside C

Our result
Can classify all points using O(σ(P, C) log2 n) oracle queries.

29/30

Analysis idea

I If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

I Else pocket does not contain a vertex of inner/outer fence
=⇒ all points in pocket are outside C

Our result
Can classify all points using O(σ(P, C) log2 n) oracle queries.

29/30

Analysis idea

I If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

I Else pocket does not contain a vertex of inner/outer fence
=⇒ all points in pocket are outside C

Our result
Can classify all points using O(σ(P, C) log2 n) oracle queries.

29/30

Conclusions

Conclusion & open problems

Problem Lowerbound Upperbound

Classify (2D) σ(P, C)
O(k(P) log n)

O(σ(P, C) log2 n)
Classify (3D) — O(k(P) log n)
Verify in |Fin| O(|Fin| log n)
Verify out |Fout| O(|Fout| log n)

I Shaving log factors?
I Near-optimal solution in 3D?
I Higher dimensions?
I Conjecture: Greedy extends to Rd (d > 3), queries depend
exponentially on d

30/30

Conclusion & open problems

Problem Lowerbound Upperbound

Classify (2D) σ(P, C)
O(k(P) log n)

O(σ(P, C) log2 n)
Classify (3D) — O(k(P) log n)
Verify in |Fin| O(|Fin| log n)
Verify out |Fout| O(|Fout| log n)

I Shaving log factors?

I Near-optimal solution in 3D?
I Higher dimensions?
I Conjecture: Greedy extends to Rd (d > 3), queries depend
exponentially on d

30/30

Conclusion & open problems

Problem Lowerbound Upperbound

Classify (2D) σ(P, C)
O(k(P) log n)

O(σ(P, C) log2 n)
Classify (3D) — O(k(P) log n)
Verify in |Fin| O(|Fin| log n)
Verify out |Fout| O(|Fout| log n)

I Shaving log factors?
I Near-optimal solution in 3D?

I Higher dimensions?
I Conjecture: Greedy extends to Rd (d > 3), queries depend
exponentially on d

30/30

Conclusion & open problems

Problem Lowerbound Upperbound

Classify (2D) σ(P, C)
O(k(P) log n)

O(σ(P, C) log2 n)
Classify (3D) — O(k(P) log n)
Verify in |Fin| O(|Fin| log n)
Verify out |Fout| O(|Fout| log n)

I Shaving log factors?
I Near-optimal solution in 3D?
I Higher dimensions?

I Conjecture: Greedy extends to Rd (d > 3), queries depend
exponentially on d

30/30

Conclusion & open problems

Problem Lowerbound Upperbound

Classify (2D) σ(P, C)
O(k(P) log n)

O(σ(P, C) log2 n)
Classify (3D) — O(k(P) log n)
Verify in |Fin| O(|Fin| log n)
Verify out |Fout| O(|Fout| log n)

I Shaving log factors?
I Near-optimal solution in 3D?
I Higher dimensions?
I Conjecture: Greedy extends to Rd (d > 3), queries depend
exponentially on d

30/30

References i

S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space
exploration via proximity search. Discrete Comput. Geom., 56(2):
357–376, 2016.

F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An
efficient proximity probing algorithm for metrology. Int. Conf.
on Automation Science and Engineering, CASE 2013, 342–349,
2013.

D. Angluin. Queries and concept learning. Machine Learning,
2(4): 319–342, 1987.

http://dx.doi.org/10.1007/s00454-016-9801-7
http://dx.doi.org/10.1007/s00454-016-9801-7
http://dx.doi.org/10.1109/CoASE.2013.6653995
http://dx.doi.org/10.1109/CoASE.2013.6653995
http://dx.doi.org/10.1007/BF00116828

	First attempt: A greedy algorithm
	Extending the algorithm to 3D
	An instance optimal algorithm in 2D
	Conclusions

