Active Learning a Convex Body in Low Dimensions

Sariel Har-Peled, Mitchell Jones and Rahul Saladi
UIUC Theory Seminar, November 11, 2019

An innocent problem

Problem

Input: $P \subset \mathbb{R}^{2}$, oracle for unknown convex body C.
Oracle: Query $q \in \mathbb{R}^{2}$, returns true $\Longleftrightarrow q \in C$.
Goal: Compute $P \cap C$ using fewest number of oracle queries.

Motivation: Active learning

- Input space X
- Learner data: $x_{1}, \ldots, x_{n} \in X$ (without labels)
- Learner can query oracle for label of any $q \in X$
- Build classifier using few queries
- What queries to choose?

Bad news

- Worst case: query all points
- Question: More interesting model to study?

Modified problem

Problem

Input: $P \subset \mathbb{R}^{2}$, oracle for unknown convex body C.
Oracle: Separation oracle

Goal: Compute $P \cap C$ using fewest number of oracle queries.

- Slightly stronger model

Motivation

- Slightly stronger model
- Separation oracles are well-known (OR)

Motivation

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:

Motivation

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:
- Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]

Motivation

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:
- Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
- Proximity probe [Panahi, Adler, et al., 2013]

Motivation

- Slightly stronger model
- Separation oracles are well-known (OR)
- Computational problems with oracle access:
- Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
- Proximity probe [Panahi, Adler, et al., 2013]
- Minimizing communication complexity

One approach: PAC learning

- Allow error in classification

One approach: PAC learning

- Allow error in classification
- Algorithm:

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input
2. Obtain labels for sample

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

One approach: PAC learning

- Allow error in classification
- Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

- Size of sample?

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \Longrightarrow symmetric difference is a wedge

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \Longrightarrow symmetric difference is a wedge
- Wedge has finite VC dimension \Longrightarrow random sample of size $\approx O\left(\varepsilon^{-1} \log \varepsilon^{-1}\right) \Longrightarrow \varepsilon n$ error

One approach: PAC learning

- Misclassified points = symmetric difference of learned and true classifier
- Halfplane \Longrightarrow symmetric difference is a wedge
- Wedge has finite VC dimension \Longrightarrow random sample of size $\approx O\left(\varepsilon^{-1} \log \varepsilon^{-1}\right) \Longrightarrow \varepsilon n$ error
- Scheme fails for arbitrary convex regions

Hard vs. easy instances

- Worst case: query all points

Hard vs. easy instances

- Worst case: query all points
- Goal: design instance sensitive algorithms

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.
- $F_{\text {out }}=$ convex polygon with fewest vertices s.t. $C \subseteq F_{\text {out }}$ and $C \cap P=F_{\text {out }} \cap P$.

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.
- $F_{\text {out }}=$ convex polygon with fewest vertices s.t. $C \subseteq F_{\text {out }}$ and $C \cap P=F_{\text {out }} \cap P$.
- Separation price $\sigma(P, C)=\left|F_{\text {in }}\right|+\left|F_{\text {out }}\right|$.

A lower bound

- $F_{\text {in }}=$ convex polygon with fewest vertices s.t. $F_{\text {in }} \subseteq C$ and $C \cap P=F_{\text {in }} \cap P$.
- $F_{\text {out }}=$ convex polygon with fewest vertices s.t. $C \subseteq F_{\text {out }}$ and $C \cap P=F_{\text {out }} \cap P$.
- Separation price $\sigma(P, C)=\left|F_{\text {in }}\right|+\left|F_{\text {out }}\right|$.

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

A lower bound

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

A lower bound

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

- Q: set of queries, $Q_{\text {in }}=C \cap Q, K=C H\left(Q_{\text {in }}\right)$

A lower bound

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

- Q: set of queries, $Q_{\text {in }}=C \cap Q, K=C H\left(Q_{\text {in }}\right)$
- $K \subseteq C$ and $K \cap P=C \cap P$

A lower bound

Lemma

Any algorithm must make at least $\sigma(P, C)$ oracle queries.

Proof.

- Q: set of queries, $Q_{\text {in }}=C \cap Q, K=C H\left(Q_{\text {in }}\right)$
- $K \subseteq C$ and $K \cap P=C \cap P$

$$
\Longrightarrow\left|Q_{\text {in }}\right| \geqslant|K| \geqslant\left|F_{\text {in }}\right|
$$

\square

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$
Verify in (2D)	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$

$(\dagger) k(P)=$ largest $\#$ of pts of P in convex position

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$
Verify in (2D)	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out (2D)	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)(\ddagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position
(\ddagger) Randomized, w.h.p

Results

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)(\dagger)$
Classify (2D)	$\sigma(P, C)$	$O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)(\dagger)$
Verify in (2D)	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out (2D)	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)(\ddagger)$

$(\dagger) k(P)=$ largest \# of pts of P in convex position
(\ddagger) Randomized, w.h.p

First attempt: A greedy algorithm

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$
- Operations:

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$
- Operations:

1. $\operatorname{expand}(p)$: Update $B=\mathrm{CH}(B+p)$
2. remove $\left(\ell^{+}\right)$: Classify points $P \cap \ell^{+}$as outside C

The greedy algorithm: preliminaries

- Maintain approximation $B \subseteq C$
- Operations:

1. $\operatorname{expand}(p)$: Update $B=\mathrm{CH}(B+p)$
2. remove $\left(\ell^{+}\right)$: Classify points $P \cap \ell^{+}$as outside C

- $c \in \mathbb{R}^{2}$ is a centerpoint for P if for all halfspaces ℓ^{+}:

$$
c \in \ell^{+} \Longrightarrow\left|P \cap \ell^{+}\right| \geqslant|P| / 3
$$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow \operatorname{expand}(c)$

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow \operatorname{expand}(c)$
(B) $c \notin C, h$ is a separating line \Longrightarrow remove (h)

The greedy algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow \operatorname{expand}(c)$
(B) $c \notin C, h$ is a separating line \Longrightarrow remove (h)

Animation

Analysis

- Count visible pairs of points

Analysis

- Count visible pairs of points
- In each iteration:

Analysis

- Count visible pairs of points
- In each iteration:
(A) Pairs lose visibility

Analysis

- Count visible pairs of points
- In each iteration:
(A) Pairs lose visibility
(B) Classify points

Analysis

- Count visible pairs of points
- In each iteration:
(A) Pairs lose visibility
(B) Classify points

Lemma

Number of visible pairs decrease by a (roughly) constant fraction in each
 iteration.

Two interpretations of the visibility graph

Visibility graph $G_{B}=(P, E)$:

$$
(p, q) \in E \Longleftrightarrow p q \cap B=\varnothing
$$

$$
\begin{gathered}
p \in P \text { has interval } I(p) \\
(p, q) \in E \Longleftrightarrow I(p) \cap I(q) \neq \varnothing
\end{gathered}
$$

Two observations

Observations:

1. $Q \subseteq P$ independent set in $G_{B} \Longrightarrow Q$ is in convex position

$$
(p, q) \in E \Longleftrightarrow p q \cap B=\varnothing
$$

Two observations

Observations:

1. $Q \subseteq P$ independent set in $G_{B} \Longrightarrow Q$ is in convex position
2. $Q \subseteq P$ and B are linearly separable $\Longrightarrow Q$ clique in G_{B}

$$
(p, q) \in E \Longleftrightarrow p q \cap B=\varnothing
$$

Number of edges in G_{B}

Lemma 1

$\alpha\left(G_{B}\right)=$ size of largest indep. set, $\omega\left(G_{B}\right)=$ maximum depth, then $|E|=O\left(\alpha\left(G_{B}\right) \omega\left(G_{B}\right)^{2}\right)$.

$$
\begin{gathered}
p \in P \text { has interval } I(p) \\
(p, q) \in E \Longleftrightarrow I(p) \cap I(q) \neq \varnothing
\end{gathered}
$$

How many edges are removed?

- Compute halfspace ℓ^{+}tangent to B maximizing $\left|\ell^{+} \cap U\right|$

How many edges are removed?

- Compute halfspace ℓ^{+}tangent to B maximizing $\left|\ell^{+} \cap U\right|$
- Set $m=\left|\ell^{+} \cap U\right| \geqslant \omega\left(G_{B}\right)$

How many edges are removed?

- Compute halfspace ℓ^{+}tangent to B maximizing $\left|\ell^{+} \cap U\right|$
- Set $m=\left|\ell^{+} \cap U\right| \geqslant \omega\left(G_{B}\right)$
- $c=$ centerpoint of $\ell^{+} \cap U$

How many edges are removed?

- Compute halfspace ℓ^{+}tangent to B maximizing $\left|\ell^{+} \cap U\right|$
- Set $m=\left|\ell^{+} \cap U\right| \geqslant \omega\left(G_{B}\right)$
- $c=$ centerpoint of $\ell^{+} \cap U$

Lemma 2

When $c \in C$, expand (c) deletes $\geqslant \omega\left(G_{B}\right)^{2} / 36$ edges from G_{B}.

Putting it all together

Lemma 1

$\alpha\left(G_{B}\right)=$ size of largest indep. set, $\omega\left(G_{B}\right)=$ maximum depth, then $|E|=O\left(\alpha\left(G_{B}\right) \omega\left(G_{B}\right)^{2}\right)$.

Lemma 2

When $c \in C$, expand (c) deletes $\geqslant \omega\left(G_{B}\right)^{2} / 36$ edges from G_{B}.

Putting it all together

Lemma 1

$\alpha\left(G_{B}\right)=$ size of largest indep. set, $\omega\left(G_{B}\right)=$ maximum depth, then $|E|=O\left(\alpha\left(G_{B}\right) \omega\left(G_{B}\right)^{2}\right)$.

Lemma 2

When $c \in C$, expand (c) deletes $\geqslant \omega\left(G_{B}\right)^{2} / 36$ edges from G_{B}.

Our result

Greedy algorithm classifies all points using $O(k(P) \log n)$ queries.

Putting it all together

Lemma 1

$\alpha\left(G_{B}\right)=$ size of largest indep. set, $\omega\left(G_{B}\right)=$ maximum depth, then $|E|=O\left(\alpha\left(G_{B}\right) \omega\left(G_{B}\right)^{2}\right)=O\left(k(P) \omega\left(G_{B}\right)^{2}\right)$.

Lemma 2

When $c \in C$, expand (c) deletes $\geqslant \omega\left(G_{B}\right)^{2} / 36$ edges from G_{B}.

Our result

Greedy algorithm classifies all points using $O(k(P) \log n)$ queries.

Extending the algorithm to 3D

Extending the algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow \operatorname{expand}(c)$
(B) $c \notin C, h$ is a separating line \Longrightarrow remove (h)

Extending the algorithm

$U \subseteq P$ unclassified points. While $U \neq \varnothing$:

1. $\ell^{+}=$halfspace tangent to B maximizing $\left|\ell^{+} \cap U\right|$
2. $c=$ centerpoint of $\ell^{+} \cap U$
3. Query oracle using c :
(A) $c \in C \Longrightarrow \operatorname{expand}(c)$
(B) $c \notin C, h$ is a separating plane \Longrightarrow remove (h)

Extending the analysis

- When B is expanded, pairs of points do not lose visibility!

Extending the analysis

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points

Extending the analysis

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):

Extending the analysis

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):

1. $G_{B}=(P, E),(p, q) \in E \Longleftrightarrow p q$ avoids B

Extending the analysis

- When B is expanded, pairs of points do not lose visibility!
- Need to consider triples of points
- Maintain two graphs (w.r.t B):

1. $G_{B}=(P, E),(p, q) \in E \Longleftrightarrow p q$ avoids B
2. Hypergraph $H_{B}=(P, \mathcal{E}),\{p, q, r\} \in \mathcal{E} \Longleftrightarrow$ triangle $p q r$ avoids B

Everything still works

Lemma 1

$\alpha\left(G_{B}\right)=$ size of largest indep. set, $\omega=$ maximum depth, then $\left|\mathcal{E}\left(H_{B}\right)\right|=\Theta\left(\alpha\left(G_{B}\right) \omega^{3}\right)$.

Lemma 2

When $c \in C$, expand (c) deletes $\geqslant \omega\left(G_{B}\right)^{3} / c$ triangles from H_{B}.

Everything still works

Lemma 1

$\alpha\left(G_{B}\right)=$ size of largest indep. set, $\omega=$ maximum depth, then $\left|\mathcal{E}\left(H_{B}\right)\right|=\Theta\left(\alpha\left(G_{B}\right) \omega^{3}\right)$.

Lemma 2

When $c \in C$, expand (c) deletes $\geqslant \omega\left(G_{B}\right)^{3} / c$ triangles from H_{B}.

Our result

Greedy algorithm classifies all points using $O(k(P) \log n)$ queries.

An instance optimal algorithm in 2D

Preliminaries

- Maintain inner approximation $B \subseteq C$

Preliminaries

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen

Preliminaries

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen
- Two operations:

Preliminaries

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen
- Two operations:

1. Directional climb

Preliminaries

- Maintain inner approximation $B \subseteq C$
- Query is more carefully chosen
- Two operations:

1. Directional climb
2. Pocket splitting

Directional climbs

Given direction v:

- Compute line ℓ tangent to B, perpendicular to v
- Regular iteration on $\ell^{+} \cap U$.

Pockets

Pocket: A connected region of $\mathrm{CH}(\cup \cup B) \backslash B$

Lemma

In $O(\log n)$ oracle queries, can split a pocket Υ, into two pockets $\Upsilon_{1}, \Upsilon_{2},\left|\Upsilon_{i} \cap P\right| \leqslant(2 / 3)|\Upsilon \cap P|$.

Algorithm sketch

1. Vertical climb in positive \& negative direction of x-axis

Algorithm sketch

1. Vertical climb in positive \& negative direction of x-axis

Algorithm sketch

1. Vertical climb in positive \& negative direction of x-axis
2. Obtain a segment $u v \subseteq B \subseteq C$

Algorithm sketch

1. Vertical climb in positive \& negative direction of x-axis
2. Obtain a segment $u v \subseteq B \subseteq C$
3. Repeatably split non-empty pockets

Algorithm sketch

1. Vertical climb in positive \& negative direction of x-axis
2. Obtain a segment $u v \subseteq B \subseteq C$
3. Repeatably split non-empty pockets

Algorithm sketch

1. Vertical climb in positive \& negative direction of x-axis
2. Obtain a segment $u v \subseteq B \subseteq C$
3. Repeatably split non-empty pockets

Analysis idea

- If a pocket contains a vertex v of inner/outer fence, charge creation and splitting of pocket to v

Analysis idea

- If a pocket contains a vertex v of inner/outer fence, charge creation and splitting of pocket to v
- Else pocket does not contain a vertex of inner/outer fence \Longrightarrow all points in pocket are outside C

Analysis idea

- If a pocket contains a vertex v of inner/outer fence, charge creation and splitting of pocket to v
- Else pocket does not contain a vertex of inner/outer fence \Longrightarrow all points in pocket are outside C

Our result

Can classify all points using $O\left(\sigma(P, C) \log ^{2} n\right)$ oracle queries.

Conclusions

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?
- Near-optimal solution in 3D?

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?

Conclusion \& open problems

Problem	Lowerbound	Upperbound
Classify (2D)	$\sigma(P, C)$	$O(k(P) \log n)$ $O\left(\sigma(P, C) \log ^{2} n\right)$
Classify (3D)	-	$O(k(P) \log n)$
Verify in	$\left\|F_{\text {in }}\right\|$	$O\left(\left\|F_{\text {in }}\right\| \log n\right)$
Verify out	$\left\|F_{\text {out }}\right\|$	$O\left(\left\|F_{\text {out }}\right\| \log n\right)$

- Shaving log factors?
- Near-optimal solution in 3D?
- Higher dimensions?
- Conjecture: Greedy extends to $\mathbb{R}^{d}(d \geqslant 3)$, queries depend exponentially on d

References i

目
S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space exploration via proximity search. Discrete Comput. Geom., 56(2): 357-376, 2016.
目
F. Panahi, A. Adler, A. F. van der Stappen, and K. Goldberg. An efficient proximity probing algorithm for metrology. Int. Conf. on Automation Science and Engineering, CASE 2013, 342-349, 2013.
D. Angluin. Queries and concept learning. Machine Learning, 2(4): 319-342, 1987.

