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An innocent problem

Problem
Input: P ⊂ R2, oracle for unknown convex body C.

Oracle: Query q ∈ R2, returns true ⇐⇒ q ∈ C.

Goal: Compute P ∩ C using fewest number of oracle queries.
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Motivation: Active learning

I Input space X
I Learner data: x1, . . . , xn ∈ X (without labels)
I Learner can query oracle for label of any q ∈ X
I Build classifier using few queries
I What queries to choose?
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Bad news

I Worst case: query all points
I Question: More interesting model to study?
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Modified problem

Problem
Input: P ⊂ R2, oracle for unknown convex body C.

Oracle: Separation oracle

q

C q C

`

Goal: Compute P ∩ C using fewest number of oracle queries.
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Motivation

I Slightly stronger model

I Separation oracles are well-known (OR)
I Computational problems with oracle access:

I Nearest-neighbor oracles [Har-Peled, Kumar, et al., 2016]
I Proximity probe [Panahi, Adler, et al., 2013]

I Minimizing communication complexity
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One approach: PAC learning

I Allow error in classification

I Algorithm:

1. Randomly sample input
2. Obtain labels for sample
3. Classify sample

I Size of sample?
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One approach: PAC learning

I Misclassified points = symmetric difference of learned and
true classifier

I Halfplane =⇒ symmetric difference is a wedge
I Wedge has finite VC dimension =⇒ random sample of
size ≈ O(ε−1 log ε−1) =⇒ εn error

I Scheme fails for arbitrary convex regions
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Hard vs. easy instances

I Worst case: query all points

I Goal: design instance sensitive algorithms
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A lower bound

I Fin = convex polygon with fewest vertices s.t. Fin ⊆ C and
C ∩ P = Fin ∩ P.

I Fout = convex polygon with fewest vertices s.t. C ⊆ Fout

and C ∩ P = Fout ∩ P.
I Separation price σ(P, C) = |Fin|+ |Fout|.

Lemma
Any algorithm must make at least σ(P, C) oracle queries.
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A lower bound

Lemma
Any algorithm must make at least σ(P, C) oracle queries.

Proof.

I Q: set of queries, Qin = C ∩ Q, K = CH(Qin)

I K ⊆ C and K ∩ P = C ∩ P
=⇒ |Qin| > |K| > |Fin|
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Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30



Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30



Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30



Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position

(‡) Randomized, w.h.p

12/30



Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position
(‡) Randomized, w.h.p

12/30



Results

Problem Lowerbound Upperbound

Classify (2D) σ(P, C) O(k(P) log n) (†)

Classify (2D) σ(P, C) O(σ(P, C) log2 n)

Classify (3D) — O(k(P) log n) (†)

Verify in (2D) |Fin| O(|Fin| log n)

Verify out (2D) |Fout| O(|Fout| log n) (‡)

(†) k(P) = largest # of pts of P in convex position
(‡) Randomized, w.h.p

12/30



First attempt: A greedy algorithm



The greedy algorithm: preliminaries

I Maintain approximation B ⊆ C

I Operations:

1. expand(p): Update B = CH(B+ p)
2. remove(`+): Classify points P ∩ `+ as outside C

I c ∈ R2 is a centerpoint for P if for all halfspaces `+:
c ∈ `+ =⇒ |P ∩ `+| > |P|/3.
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The greedy algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)
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Animation
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Analysis

I Count visible pairs of points

I In each iteration:

(A) Pairs lose visibility
(B) Classify points

Lemma
Number of visible pairs decrease by a
(roughly) constant fraction in each
iteration.

B
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Two interpretations of the visibility graph

Visibility graph GB = (P, E):

(p,q) ∈ E ⇐⇒ pq ∩ B = ∅

B

p ∈ P has interval I(p)
(p,q) ∈ E ⇐⇒ I(p) ∩ I(q) 6= ∅

C p2

p3

p4

p1

B
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Two observations

Observations:
1. Q ⊆ P independent set in
GB =⇒ Q is in convex
position

2. Q ⊆ P and B are linearly
separable =⇒ Q clique in
GB

(p,q) ∈ E ⇐⇒ pq ∩ B = ∅

B
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Number of edges in GB

Lemma 1
α(GB) = size of largest indep.
set, ω(GB) = maximum depth,
then |E| = O(α(GB)ω(GB)2).

p ∈ P has interval I(p)
(p,q) ∈ E ⇐⇒ I(p) ∩ I(q) 6= ∅

C p2

p3

p4

p1

B
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How many edges are removed?

I Compute halfspace `+ tangent to B maximizing |`+ ∩ U|

I Set m = |`+ ∩ U| > ω(GB)
I c= centerpoint of `+ ∩ U

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.
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Putting it all together

Lemma 1
α(GB) = size of largest indep. set, ω(GB) = maximum depth,
then |E| = O(α(GB)ω(GB)2).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)2/36 edges from GB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.
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Extending the algorithm to 3D



Extending the algorithm

U ⊆ P unclassified points. While U 6= ∅:

1. `+ = halfspace tangent to B maximizing |`+ ∩ U|
2. c= centerpoint of `+ ∩ U
3. Query oracle using c:

(A) c ∈ C =⇒ expand(c)
(B) c 6∈ C, h is a separating line =⇒ remove(h)
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Extending the analysis

I When B is expanded, pairs of points do not lose visibility!

I Need to consider triples of points
I Maintain two graphs (w.r.t B):

1. GB = (P, E), (p,q) ∈ E ⇐⇒ pq avoids B
2. Hypergraph HB = (P,E), {p,q, r} ∈ E ⇐⇒ triangle pqr
avoids B
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Everything still works

Lemma 1
α(GB) = size of largest indep. set, ω = maximum depth, then
|E(HB)| = Θ(α(GB)ω3).

Lemma 2
When c ∈ C, expand(c) deletes > ω(GB)3/c triangles from HB.

Our result
Greedy algorithm classifies all points using O(k(P) log n)
queries.
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An instance optimal algorithm in 2D



Preliminaries

I Maintain inner approximation B ⊆ C

I Query is more carefully chosen
I Two operations:

1. Directional climb
2. Pocket splitting
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Directional climbs

Given direction v:

I Compute line ` tangent to B, perpendicular to v
I Regular iteration on `+ ∩ U.

l

B

v

q

h
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Pockets

Pocket: A connected region of CH(U ∪ B) \ B

B B

Lemma
In O(log n) oracle queries, can split a pocket Υ, into two
pockets Υ1,Υ2, |Υi ∩ P| 6 (2/3)|Υ ∩ P|.
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Algorithm sketch

1. Vertical climb in positive & negative direction of x-axis

2. Obtain a segment uv ⊆ B ⊆ C
3. Repeatably split non-empty pockets
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Analysis idea

I If a pocket contains a vertex v of inner/outer fence,
charge creation and splitting of pocket to v

I Else pocket does not contain a vertex of inner/outer fence
=⇒ all points in pocket are outside C

Our result
Can classify all points using O(σ(P, C) log2 n) oracle queries.
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Conclusions



Conclusion & open problems

Problem Lowerbound Upperbound

Classify (2D) σ(P, C)
O(k(P) log n)

O(σ(P, C) log2 n)
Classify (3D) — O(k(P) log n)
Verify in |Fin| O(|Fin| log n)
Verify out |Fout| O(|Fout| log n)

I Shaving log factors?
I Near-optimal solution in 3D?
I Higher dimensions?
I Conjecture: Greedy extends to Rd (d > 3), queries depend
exponentially on d
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