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Abstract

In the maximum facility location problem, we are given a set of clients C and facilities F .

Assigning a client u to a facility v incurs a cost w
uv

and each facility has an associated interval

I
v

on the real line. Our goal is to assign as many clients to open facilities in order to maximise

the cost of assignment, subject to the constraint that open facilities cannot have their respective

intervals overlap.

In this thesis we design two new approximation algorithms for this problem that use LP-

rounding techniques. The first is 0.19-approximation algorithm, and the second is a randomised

rounding algorithm. Afterwards, we turn our attention of the hardness of the problem, and

show that the maximum facility location problem cannot be approximated in polynomial time

within a factor of (1� 1/e+ ") for some " > 0 unless P = NP.

In order to demonstrate the utility of our algorithm, we apply it to a biological scenario

in which we aim to map sequences of nucleotides (reads) from a given donor genome to a

reference genome. We show that our algorithms are up to two order of magnitudes faster than

existing algorithms, without a sacrifice in the quality of results.
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Notation

F The set of facilities.
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u Some client in C.
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w
uv

The cost of assigning a client u to a facility v.

w(u) The facility v that a client u can be assigned to with the most weight w
uv

.

f A submodular function.

I
v

The interval on the real line associated with a facility v.

P The set of all interval endpoints.

x
uv
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y
v

A facility variable that is 1 if a facility v is open, otherwise 0. Takes a real value in
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CHAPTER 1

Introduction

The facility location problem is a classical NP-hard problem in Computer Science. Given a set

of facilities F and clients C, our goal is to assign every client to a facility. For each client u 2 C

and facility v 2 F , there is a connection cost w
uv

. In addition, there is a cost o
v

for opening

a facility v 2 F . Therefore our goal is to minimise the quantity
P

v2S o
v

+

P
u2C min

v2S w
uv

,

where S ✓ F are the subset of facilities we chose to open.

The facility location problem has been studied for many years, with one of the first approxi-

mation algorithms developed by Shmoys et al. (1997). In their work, the authors develop a

4-approximation algorithm. They apply a common technique which will be seen throughout

the rest of this thesis. First, they model the problem as an integer program. Integer programs

allow one to mathematically model a problem, where the goal is to optimise some objective

function subject to a set of constraints. Unfortunately, it’s not surprising that integer programs

are NP-hard to solve. However, one can instead relax the model to a linear program. This means

the variables in the model take on real values in the range [0, 1] – they admit a fractional solu-

tion. However it doesn’t necessarily make sense to open 0.5 of a facility, and so we must round

this fractional solution back to an integral solution, while still ensuring the solution obeys the

constraints of the model. More recent results have appeared since the work by Shmoys et al.

(1997). An example of this is the paper by Li (2013), where he develops a 1.488-approximation

algorithm for the facility location problem. This algorithm currently yields the best known ap-

proximation ratio.

In this thesis we look at a modified version of the facility location problem, which we call the

maximum facility location problem. Firstly, we impose that o
v

= 0 for all v 2 F and aim to

maximise our objective instead of minimising it. Finally, we say that each facility v 2 F has an

interval I
v

on the real line, and open facilities cannot have their respective intervals overlap.

1



1.1 CONTRIBUTION 2

This means we aim to select an independent set of facilities S ✓ F to maximise the quantity
P

u2C max

v2S w
uv

.

We present a biological application of this problem, which is related to genome mapping. For

some species, researchers have been able to construct the full reference genome. However,

this reference genome is never exactly representative of a real (donor) genome. There may be

many differences such as mutations, sequences of nucleotides (reads) that have been inserted

or deleted and so on. Therefore it is of interest to map these reads from the donor genome back

to the provided reference genome. We show how our abstract problem can be applied in this

scenario, and compare the performance of our algorithms against existing methods.

1.1 Contribution

In this work we develop two new approximation algorithms for the maximum facility location

problem. The central idea in both algorithms is to solve a relaxed version of the integer program

formulation of this problem. The algorithms differ in how they round this fractional solution

back to an integral solution.

Formally, we say that a polynomial time approximation algorithm is a ⇢-approximation, if for

all instances of the problem produces a solution whose value is at least within ⇢ of the optimal

solution. In particular for maximisation problems, we select a ⇢ < 1. Another way to phrase

it is “This algorithm never produces a value less than ⇢ times the optimal.” For minimisation

problems, ⇢ > 1. In this case we can interpret the definition as “This algorithm never produces

a value that is greater than ⇢ times the optimal.”

We show the first algorithm results in a 0.19-approximation. The high level idea is to randomly

select a set of facilities, and then remove conflicts. This ensures that the final set of facilities

are independent. The second algorithm is a rounding algorithm, where we randomly modify

the fractional values until we obtain integral values. This method results in a non-constant

approximation algorithm. Afterwards, we develop inapproximability results for the maximum

facility location problem. More specifically, we show that the problem can not be approximated

better than a factor of (1� 1/e) in polynomial time unless P = NP.



1.2 OUTLINE 3

Finally, we apply our algorithms to the problem of genome mapping. We compare our methods

to previously known methods on simulated and real data sets. Our algorithms are up to two

orders of magnitude faster than existing methods, without sacrificing solution quality (precision

and recall).

1.2 Outline

To begin, we provide a background of the relevant material that will be needed for the rest of

this thesis. Such as a brief introduction to approximation and randomised algorithms and the

rounding techniques that will be used in our algorithms (Chapter 2). Afterwards, we formally

define the maximum facility location problem, and develop the integer (and linear) program

(Chapter 3).

Following the formulation, we discuss the two new algorithms and analyse their various prop-

erties and approximation ratio. We also develop a hardness result for our problem (Chapter 4).

In the next chapter, we look at a biological application of this abstract problem. Our methods

are experimented with on simulated and real data sets. At the end of the chapter we discuss the

results (Chapter 5).

We finish this thesis by providing a final discussion of the overall results (Chapter 6) and make

some concluding remarks (Chapter 7).



CHAPTER 2

Background

Optimisation problems are an important field of Computer Science and Mathematics. Any prob-

lem that can be modelled as an objective function with (optional) constraints is an optimisation

problem.

To begin, we will start with the definition and motivation behind approximation and ran-

domised algorithms. Afterwards, we will look at a class of functions known as submodular

functions. Various types of maximisation problems will be discussed. In the section following,

we will discuss the various types of techniques which are used to approximate a solution to

these problems.

2.1 Approximation & Randomised Algorithms

We start by discussing the concept of approximation and randomised algorithms. This will

provide the appropriate background material before looking at the other concepts in the review.

Many problems in Computer Science are typically NP-hard. These problems are either decision

or optimisation problems. Decision problems involve returning a “yes” or “no” solution to a

problem. A common example is the subset-sum problem: Given a set of integers x
1

, . . . , x
n

,

does there a exist a subset of these integers that add up to a target C? On the other hand, op-

timisation problems ask to maximise or minimise some objective. An example is the maximum

independent set. Given a graph G = (V,E) where V are the set of vertices and E are the set

of edges, we say two vertices are independent if they do not share an edge. The problem asks

to find a subset of vertices S ✓ V that are independent, such that we maximise |S|. This is

where the idea of an approximation algorithm comes into play. While we may not have access

4



2.2 SET FUNCTION OPTIMISATION PROBLEMS 5

to polynomial time solutions for some problems, we can derive solutions that run in polynomial

time which provide a guarantee on the solution.

Consider the set cover problem. We are given a universal set of items U and m subsets

S
1

, S
2

, . . . S
m

such that 8i 2 [1,m] : S
i

✓ U . In addition, each set S
i

has a non-negative

weight w
i

. We want to select a set C of these subsets S
i

such that [
S2CS = U . Our goal is

to minimise the total weight,
P

S2C w
S

. Johnson (1973), Lovász (1975) and Chvatal (1979)

all independently present a solution which produces a H
d

?-approximation, where H
n

is the nth

harmonic number1 and d? is the size of the largest subset. The algorithm is simple, at each step,

we simply pick the set S that minimises the quantity wS
|S\[T2CT | . Intuitively, we want to select

sets with a low weight that cover a lot of new elements.

A branch of approximation algorithms are randomised algorithms. Randomised algorithms in-

volve making random choices in order to reach a final solution. One can then analyse the

expected value of the solution and derive an approximation ratio. A problem that can be ap-

proximated with a surprisingly simple randomised algorithm is the MAX-SAT problem. In the

MAX-SAT problem, we are given n boolean variables x
1

, x
2

, . . . , x
n

and m clauses C
1

, C
2

, . . . , C
m

in disjunctive normal form. Each clause also has an associated weight w
j

for j 2 [1,m]. Our

goal is to set the values of x
i

so that we maximise the weighted sum of the satisfied clauses.

Johnson (1973) was the first to introduce an algorithm for the MAX-SAT problem. Afterwards,

Yannakakis (1994) developed a randomised variant of Johnson’s algorithm, which resulted in a
1

2

-approximation algorithm. The approach is to simply set each variable x
i

to true with proba-

bility 1

2

. This leads to a 1

2

-approximation for the MAX-SAT problem.

2.2 Set Function Optimisation Problems

In this section we discuss the concept of submodular functions and their properties. Let S =

{s
1

, s
2

, . . . , s
n

} be a set of n elements and 2

S be the power set of S. A set function f : 2

S ! R

maps each subset of S to a real value. A function is submodular if 8A ✓ B ✓ S and 8x 2 S\B

f(A+ x)� f(A) � f(B + x)� f(B).

1Formally, the nth harmonic number Hn is defined as Hn =

Pn
k=1

1
k .
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In other words, the difference in adding an element x to a smaller set is larger than adding x to

a bigger set. Additionally, a set function f is non-decreasing if for any A ✓ B ✓ S

f(B) � f(A).

Nemhauser et al. (1978) list various sorts of functions and prove their submodularity. More

precisely, given an integer K, they propose the following problem for any submodular function

f

max

A✓U

{ f(A) | |A|  K, f is submodular } .

This is known as the submodular maximisation problem subject to a cardinality constraint,

where we aim to select a subset of (at most) K elements from U such that we maximise f .

2.2.1 Matroid Constraints

Let M = (U, I), where U is a universal set of items and I is a collection of subsets of U . Then

M is a subset system if for any T ⇢ S ✓ U , we have that if S 2 I, then this implies T 2 I.

The system M is a matroid if it has the matroid property. The matroid property states that for

any two subsets S, T 2 I, where |S| < |T |, then there must exist an element x 2 T\S such that

S + x 2 I.

Nemhauser et al. (1978) also consider maximising submodular functions subject to a matroid

constraint. Given a set U 0 ✓ U , let D(U 0
) = {S 2 I | S ✓ U 0 }. In other words, D(U 0

) is the

set of all subsets that are contained within U 0, that are independent. Finally, let each element

i 2 U have a cost c
i

. It is then shown that the function

f(U 0
) = max

F2D(U

0
)

X

i2F
c
i

is submodular and non-decreasing.

Fisher et al. (1978) focus on maximising a submodular function f over P intersecting matroids

(U, I
p

) for p 2 [1, P ]. Formally, they define the problem as

max

A✓U

8
<

:f(A) | A 2
P\

p=1

I
p

9
=

; .



2.3 ALGORITHM TECHNIQUES 7

2.2.2 Knapsack Constraints

Another common problem is maximising a (not necessarily monotone) submodular function f

over a knapsack constraint. The knapsack constraint is defined as follows. Each element i 2 U

has a cost c
i

and we’re given a number C. Our goal is to pick a subset A ✓ U of elements

maximising f(A) such that
P

i2A c
i

 C (Kulik et al., 2013).

An extension of this problem is to maximise f subject to multiple knapsack constraints. Formally,

consider the problem of maximising f subject to d knapsack constraints (for a fixed d). This

means for each knapsack constraint j 2 [1, d], each element has a cost c
i,j

and an upperbound

C
j

(Kulik et al., 2013). This means we want to solve

max

A✓U

(
f(A) |

X

i2A
c
i,j

 C
j

8j 2 [1, d]

)
.

2.2.3 Independent Set in Interval Graphs

The last problem we will consider is the following problem: Given a set of intervals U on the

real line, and a submodular function f , we wish to select a subset of intervals A ✓ U such that

we maximise f(A). In addition, we impose the constraint that each pair of intervals in A cannot

overlap. Formally, the aim is to solve

max

A✓U

{f(A) | No two intervals in A overlap}

This problem is studied by Feldman (2013) and will be discussed later in more detail.

2.3 Algorithm Techniques

Now that all of the main problems have been defined, we spend the rest of the chapter looking at

the main algorithms and techniques used to solve these problems. First, we discuss some basic

greedy algorithms used to maximise a submodular function subject to the various constraints

defined (such as cardinality and matroid constraints).

Next, we will look at an algorithm known as the continuous greedy algorithm. This algorithm

is used to improve the approximation ratios for maximising submodular functions subject to a

matroid constraint and subject to a knapsack constraint.
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Afterwards, the concept of a contention resolution scheme is introduced. Using this, we show

how one can use these schemes to obtain an approximation algorithm for the the problem of

maximising a submodular function by selecting an independent set of intervals in an interval

graph.

Finally, we will discuss a technique known as pipage rounding. The goal of this technique

is to round the fractional solution provided by a linear program to an integral solution. To

illustrate pipage rounding, we discuss a simple rounding algorithm for solving maximum weight

matching over a bipartite graph.

2.3.1 Greedy Algorithms

In this section we will discuss some greedy algorithms used to solve the problems mentioned

in Section 2.2. Consider the problem of finding a set A ✓ U that maximises f(A) such that

|A|  K for some integer K. Nemhauser et al. (1978) present the following approximation

algorithm. For K iterations, select the element x that yields the largest increase. In other

words, we aim to find an element x such that x = argmax

x

02U\A f(A+x0)�f(A). We then add

x to A and continue. This rather simple algorithm results in a
�
1� 1

e

�
-approximation.

An alternate interesting algorithm proposed by the authors is the R-interchange heuristic. The

algorithm works as follows. We pick an arbitrary set S such that |S| = K. We then try to

find a new set S0 such that |S � S0|  R (i.e. the difference between the two sets is at most

R) and f(S0
) > f(S). We then continue this to find another set S00, and so on. This iterative

algorithm terminates when we cannot find a new set that improves the value. The algorithm is

a
⇣

K

2K�R

⌘
-approximation.

Another problem discussed was maximising a submodular function f subject to the matroid

constraint, as defined in Section 2.2.1. Fisher et al. (1978) proposed a greedy algorithm to

solve this problem. Given the initial universe U , at each step we add an element x 2 U to a set

S that maximises the difference f(S + x) � f(S). If this element x is in the intersection of the

P matroids (i.e. x 2 \P
p=1

I
p

), then add x to S and continue. Otherwise, we set U = U � x and

repeat the previous step (now finding an element x0 2 U � x that maximises the difference).

This process is repeated until U is empty. this heuristic also leads to a
⇣

1

P+1

⌘
-approximation.
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This means if we want maximise a submodular function over a single matroid constraint, then

the algorithm described is a 1

2

-approximation.

2.3.2 Continuous Greedy

We now focus our attention on a different type of greedy algorithm, known as the continu-

ous greedy algorithm. Given a submodular (possibly non-monotone) function f , we would like

to maximise f . In the cases when there are additional constraints (such as the matroid con-

straint), they typically lead to worse approximations as they are harder to solve. Gharan and

Vondrák (2011) describe an algorithm that provided a 0.41-approximation algorithm for uncon-

strained submodular maximisation and a 0.325-approximation when subjected to the matroid

constraint.

In order to discuss their algorithm, we first introduce the multilinear extension of a submodular

function f . Recall that given a universal set of elements U , f is defined as f : 2

U ! R. Given a

vector x = [0, 1]|U |, let R ✓ U be a random set in which element i is in R with probability x
i

. A

multilinear extension of f is a function F : [0, 1]U ! R that is the expected value of f given R.

Formally,

F (x) , E[f(R)] =

X

S✓U

f(S)
Y

i2S
x
i

Y

i 62S
(1� x

i

). (2.1)

Simulated annealing is a popular heuristic used to search for the maximum (or minimum)

of a function. The idea behind simulated annealing is to start bouncing around the feasible

region and gradually settle down into a maximum (or minimum) point. The reason we start

by randomly moving around the feasible region is to avoid being trapped in a local maximum

(or minimum). Gharan and Vondrák (2011) present an algorithm which is based on simulated

annealing. Given a set S ⇢ U and a parameter p 2 [0, 1], they define a probability distribution

R
p

(S) by starting from S and adding/removing each element independently with probability

1� p. Let 1
S

be the characteristic vector of a set S ✓ U (coordinate i = 1 if and only if i 2 S).

They observe that E[f(R
p

(S))] = F (p1
S

+ (1 � p)1
¯

S

) (where ¯S = U\S, the compliment of S).

Therefore when p = 1/2, this is equivalent to bringing elements into S by flipping a coin. As

p! 1, little modifications to S are made at all.

Therefore the algorithm starts as follows. Given an initial empty set S and p =

1

2

, we contin-

uously add elements to S if there exists an element i 2 U such that F (p1
S+i

+ (1 � p)1
¯

S�i

) >
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F (p1
S

+ (1 � p)1
¯

S

). We then increment p by some small value � and continue while p < 1.

Afterwards, we return the best solution among all sets (either S or ¯S) encountered. In order

for the analysis to hold, � = n�3. While this algorithm is easy to implement, it does not run in

polynomial time. This is because we need to constantly evaluate the multilinear extension F

(2.1) in order to find an element i 2 U that improves the solution at each step. In addition, the

algorithm performs at least O(n3

) iterations, which is not very practical.

As discussed in Section 2.3.1, there exists a
⇣

1

P+1

⌘
-approximation algorithm for maximising f

over the intersection of P matroids. For example, when we just have a single matroid, we have

a 1

2

-approximation. With the results by Gharan and Vondrák (2011), Calinescu et al. (2011)

were able to improve the approximation factor to 1 � 1

e

> 1

2

, but they estimate the running

time of the implementation would be O(n8

). This running time is dominated by the number of

times the algorithm would have to ‘query’ the membership oracle (to test if a set A ✓ S is in

I). More precisely, the authors say it would require O(n7

) queries to the membership oracle,

which is hardly practical. The goal is to approximate max{F (y) | y 2 P (M)}, where P (M) is

the polytope2 of a matroid M . After finding a solution y 2 [0, 1]U , we round it to an integral

solution y0 such that y0 2 {0, 1}U and f(y0) � F (y) �
�
1� 1

e

�
⇥OPT (where OPT is the value of

the optimal solution).

Calinescu et al. (2011) present their modified version of the continuous greedy algorithm. Let

� =

1

9d

2 , where d is the rank of the matroid.3 Again, we start with an empty solution y and

this time t = 0. Let R be a set where an element i is added with probability y
i

. Since we

cannot evaluate F directly (as it would be expensive iterating through O(2

|U |
) subsets), we

estimate F by sampling. At each iteration, we perform 10

�

2 (1 + lnn) samples of R to estimate

w
i

= E[f(R + j)� f(R)] for each i 2 U . These values w
i

are the weight of each element i. We

then find a set J maximising the sum of the weights in the matroid M and set y = y + �1
J

. We

then increment t by �, and terminate when t � 1, returning y. The main reason we sample F

so many times is to ensure that we get a good estimate with high probability. In fact, with high

probability this algorithm yields a
�
1� 1

e

� 1

3d

�
-approximation. However the authors state that

with a small enough �, the last term is eliminated.

2A polytope is an n-dimensional object with flat sides. For example, a 2-dimensional polytope is a polygon, and
a 3-dimensional polytope is a polyhedron.

3The rank of a matroid M = (U, I) is the size of the largest set in I. Formally, r(U) = maxS✓U :S2I |S|.
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As defined by Section 2.2.2, Kulik et al. (2013) consider the problem of maximising f subject

to d knapsack constraints (for a fixed d). This means for each knapsack constraint j 2 [1, d],

each element has a cost c
i,j

and an upperbound C
j

. We will concentrate on the case when f

is monotone, in which they claim a (nearly optimal)
�
1� 1

e

� "
�
-approximation for any " > 0.

The authors show that the problem can be solved with an (↵ � ")-approximation, if there is

a polynomial time ↵-approximation algorithm for the continuous problem with respect to f .

This is done by using the continuous greedy algorithm and then performing rounding. Since

f is monotone, we know of a
�
1� 1

e

�
-approximation. Therefore this leads us to a (1 � 1

e

� ")-

approximation as claimed.

2.3.2.1 Faster Versions of Continuous Greedy

The reader may have noticed that we previously mentioned that the running time of the con-

tinuous greedy algorithm is very large. This is mostly due to the small � steps made at each

iteration. Commonly there is a trade-off between computation time and an approximation ra-

tio. In this section, we discuss some algorithms developed by Badanidiyuru and Vondrák (2014)

and Wei et al. (2014) that study modified versions of the continuous greedy algorithm which

are faster in practice, but lead to a slightly worse approximation ratio.

In Section 2.3.1 we discussed a simple greedy algorithm that selects elements that improve the

solution if they form one of the subsets in I. This yielded a 1

2

-approximation. On the other hand,

we also discussed the continuous greedy algorithm which results in a
�
1� 1

e

�
-approximation.

The insight made by Badanidiyuru and Vondrák (2014) is to introduce an intermediate value

� 2 (0, 1] that interpolates between these two solutions. The solution they present results in a⇣
1� 1

(1+�)

1/�

⌘
-approximation. Therefore if � = 1, then we get the original greedy algorithm. As

� ! 0, we approach the other
�
1� 1

e

�
-approximation.

In the first algorithm discussed, we select individual elements and add them to our set S.

Compared to the continuous greedy algorithm where we estimate F and select an entirely new

set of elements J at each iteration. Therefore they provide an algorithm which is a combination

between these two solutions, choosing a set amount of items at each iteration and then updating

the solution instead of picking an entire independent set (or only a single element). This reduces

the number of samples needed to estimate the multilinear extension F , but also the number of
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time steps (depending on the value of �). The algorithm they derive ultimately results in a
�
1� 1

e

� "
�
-approximation algorithm for some " > 0.

In Section 2.2, we also discussed the problem of maximising a submodular function f such that

the set S ✓ U we pick has at most K elements. Once again, greedily picking elements based on

the largest benefit led to a
�
1� 1

e

�
-approximation. However, when f is complex to evaluate the

algorithm can still be time consuming. Wei et al. (2014) propose various algorithms to speed up

the greedy solution. The first they discuss in the approximate greedy algorithm. In an iteration

of the normal greedy algorithm, given our current set S we select an element x? such that

x? = argmax

x2U f(S+ x)� f(S). Instead, the lazy greedy algorithm only selects an element x0

that is within � times the benefit of adding x? (for some � < 1). This means that the number of

times needed to evaluate f can be reduced. The trade-off is in the approximation. Having this

� parameter means that the lazy greedy algorithm is only a
�
1� 1

e

�

�
-approximation.

The second algorithm they propose is called multi greedy. The purpose of this algorithm is

to reduce the complexity of evaluating f by breaking it down into multiple proxy submodular

functions (Wei et al., 2014). With each next function requiring more computation to evaluate

than the previous (the authors even propose the idea that the last proxy function could be

the function f itself). Furthermore, if this is combined with the described approximate greedy

algorithm, then there will be an overall reduction in computation. For each of these � proxy

functions, we also define a set of cardinality constraints {`
1

, . . . , `
�

}, such that
P

�

i=1

`
i

= K.

For each of the � proxy functions, they run the greedy algorithm and return the union over the

final sets. The authors observed that � = 2 was even enough to notice a performance increase.

2.3.3 Contention Resolution Schemes

In this section we discuss schemes for maximising f subject to common constraints. For this

section we use the following notation. If (U, I) is a subset system, then let P (I) be a polytope of

the convex relaxations imposed by I. Given a solution x 2 P (I), let R denote a set of elements

added with probability x
i

. A c-balanced contention resolution scheme for P (I) involves reducing

R to a set S such that S 2 I, and an element x
i

that is in R is in S with probability c. Formally,

Pr[x
i

2 S | x
i

2 R] � c. This holds for any c > 0. However, if we need to work with a

larger value of c, then we can ‘scale down’ P (I) by some factor b 2 [0, 1]. In other words, we

define bP (I) = { b · x | x 2 P (I) }. This is known as a (b, c)-balanced contention resolution (CR)
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scheme. Let ⇡ be a function that given this random set R produces a set S 2 I. Given a solution

x 2 bP (I), ⇡ is a (b, c)-balanced CR scheme if Pr[x
i

2 ⇡(R) | x
i

2 R] � c for all x
i

. Finally, we

say the balanced CR scheme is monotone if Pr[x
i

2 ⇡(A)] � Pr[x
i

2 ⇡(B)] for some A ✓ B.

Using resolution schemes that are (b, c)-balanced is attractive because it leads to the following

theorem. For a given solution x 2 bP (I) and a set S = ⇡(R), we have that E[f(S)] � cF (x).

Vondrák et al. (2011) also prove the existence of certain CR schemes for various constraints.

For example, given a matroid M = (U, I) (where n = |U |), they prove that there exists a⇣
b, 1�(1�b/n)

n

b

⌘
-balanced CR scheme.

The other constraint studied by Vondrák et al. (2011) is the knapsack constraint. As before, let

each item i 2 U have a cost c
i

. We want to select a set S ✓ U such that we maximise f(S) and
P

i2S c
i

 C. In this instance, we set C = 1 by scaling down the values of c
i

. Then Vondrák

et al. (2011) show that for any b 2 (0, 1
2

), there is a monotone (b, 1� 2b)-balanced CR scheme.

In addition, they prove a stronger result. If c
i

 � for all i 2 U and � 2 (0, 1
2

), then, for any

b 2 (0, 1

2e

), there exists a monotone (b, 1 � (2eb)(1��)/�

)-balanced CR scheme. In addition, if

there is an " 2 (2�, 1
2

) then there is a (1� ", 1� e�⌦("

2
/�)

)-balanced CR scheme.

While the theorems are attractive, they are existential. This means we do not know the exact

scheme itself, but rather only it’s values of b and c. Some examples of schemes are proposed

by Feldman (2013). An example we will discuss is maximising a submodular function f over

an interval graph. Given a set of intervals U , a solution S ✓ U is feasible if and only if no two

intervals overlap. Therefore we would like to maximise f(S) subject to this constraint. Feldman

presents a 1

4

-approximation to this problem.

To do this, Feldman uses a modified version of the continuous greedy algorithm as discussed

earlier. His observation was that the continuous greedy algorithm chooses the next set that

maximises the increase in adding an element x to the set. Instead, Feldman proposes that

we should choose the next element according to the gradient of F . This means that we take

smaller steps, and allow ourselves to have a stopping time t of larger than 1. Feldman shows

that this algorithm still produces a solution inside the polytope P (I) and has a (1� e�t � o(1))-

approximation. This is known as the measured continuous greedy algorithm.
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Therefore, Feldman uses the measured version with a stopping time of t = ln 2 to produce a

solution x 2 ln 2 · P (I). Following the definition of the (b, c)-balanced CR scheme, this implies

b = t = ln 2 also. We then create a random set R, where an element x
i

is in R with probability

x
i

. The scheme Feldman uses is the following. For every interval u 2 U , we mark u for deletion

if there is another interval u0 2 R that intersects the start point of u. We then remove all marked

intervals from R and return this new set S. One can show that Pr[u 2 S | u 2 R] = e�b for all

u 2 R. Since we know that F (x) � (1 � e�t � o(1)) ⇥ OPT, this means that the algorithm is a

E[f(S)] � e�bF (x) � e�b

(1� e�b � o(1))⇥ OPT approximation. Finally, by setting b = ln 2, we

see that this is a 1

4

-approximation as claimed.

2.3.4 Pipage Rounding

The previous section discussed taking a fractional solution x 2 [0, 1]U and performing operations

on it to obtain a valid (integral) solution. In this section we will discuss another rounding

technique. Compared with CR schemes, which select elements with probability x
i

and then

perform some sort of conflict resolution, this method of rounding involves working directly on

the solution x in order to reach an integral solution x̂ 2 {0, 1}U .

The first technique we will discuss is pipage rounding. Introduced by Ageev and Sviridenko

(2004), it involves rounding a fractional solution x to an integral one given a set of constraints.

In most optimisation solutions, there are constraints on the solution x. As an example to demon-

strate the technique, consider the following problem. Given a bipartite graph G = (A,B;E)

where (A,B) is the bipartition and a weight w
e

on each edge e, we want to select a matching

to maximise the sum of these weights. More formally, we wish to select a matching M to max-

imise
P

e2M w
e

. For each edge e 2 E, we will have a variable x
e

2 {0, 1}, where x
e

= 1 if we

choose this edge and 0 otherwise. However, since we aim to find a fractional solution, we allow

x
e

2 [0, 1]. For a node u 2 A [ B, let �(u) = { (u, v) 2 E } be the edges adjacent to u. We can

construct the following linear program.

maximise
X

e2E
w
e

x
e

subject to
X

e2�(u)

x
e

 1 8u 2 A [B

x
e

� 0 8e 2 E

(LP)
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Our goal is then to round the fractional solution x 2 [0, 1]|E| to an integral solution x 2 {0, 1}|E|.

First, we split the set of edges with a non-integral value into two matchings M
1

and M
2

. Pi-

page rounding works by decreasing (or increasing) every edge in M
1

by some small " (or �)

amount, while increasing (or decreasing) every edge in M
2

by the same " (or �) amount in

order to preserve any constraints. Gandhi et al. (2006) propose the following method. Let

S = { e 2 E | 0 < x
e

< 1 } be the set of edges with a fractional value in (LP). One can prove

that S will either have a cycle, or be a simple path. In either case, we can split a path or cycle

into two matchings M
1

and M
2

. We can then define two new variables

" = min

✓
min

e2M1

x
e

, min

e2M2

(1� x
e

)

◆
,

and

� = min

✓
min

e2M1

(1� x
e

), min

e2M2

x
e

◆
.

Essentially, " represents how much we can increase the fractional value of every edge in M
2

,

and decrease the fractional value of every edge in M
1

. Conversely, � represents the case where

we decrease the fractional value of every edge in M
2

and increase the fractional value of every

edge in M
1

.

With probability �

"+�

, define a new solution x0

x0
e

=

8
>>>><

>>>>:

x
e

� ", e 2M
1

x
e

+ ", e 2M
2

x
e

, otherwise

.

Otherwise with probability "

"+�

, define a new solution x0

x0
e

=

8
>>>><

>>>>:

x
e

+ �, e 2M
1

x
e

� �, e 2M
2

x
e

, otherwise

This means that at each iteration, we will make at least one edge in our fractional solution x

take on an integral value. An attractive thing about rounding is that the expected value of x0
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does not change. For example, consider all edges e 2M
1

, then we have

E[x0
e

] =

✓
"

"+ �

◆
(x

e

� �) +

✓
�

"+ �

◆
(x

e

+ ")

=

"x
e

� "� + �x
e

+ "�

"+ �
= x

e

.

A more general rounding algorithm is presented by Chekuri et al. (2010). They describe an

algorithm known as the randomised swap rounding scheme. Essentially, they start by expressing

a fractional solution x as a convex combination4 of the vertices of P (I). Therefore, x =

P
n

i=1

�
i

v
i

where each v
i

is a vertex of P (I) and � is a vector of scalars chosen.

The next step is called the merge operation. Start at w
1

= v
1

and �
1

= �
i

. At each iteration we

‘merge’ the vertices w
i

and v
i+1

and set �
i+1

= �
i

+�
i+1

such that E[�
i+1

w
i+1

] = �
i

w
i

+�
i+1

v
i+1

.

Then over all iterations we produce a rounded solution x0 = w
n

such that E[x0] =
P

n

i=1

�
i

v
i

= x.

Essentially, this algorithm performs a random walk from vertex to vertex. However the exact

details of this algorithm lie in this merge procedure.

As an example, they provide a merge algorithm for using the randomised swap rounding

method on matroids. As before, we find a fractional solution x and decompose it into a convex

combination such that x =

P
n

i=1

�
i

v
i

. At an iteration i, we wish to merge w
i

and v
i+1

. They

propose the following method. While w
i

6= v
i+1

, we pick an a 2 w
i

\v
i+1

and b 2 v
i+1

\w
i

such

that w
i

�a+b 2 I and v
i+1

�b+a 2 I.5 Now, with probability �i
�i+�i+1

we let v
i+1

= v
i+1

�b+a.

Otherwise we let w
i

= w
i

� a+ b. We then finally return w
i

.

Notice that this form of randomly determining which set to modify (either w
i

or v
i+1

) in expec-

tation doesn’t change the value of the solution. It is this similar technique used by Gandhi et al.

(2006) that allows one to assert that E[x0] = x with this method.

4A convex combination of a set of n vectors {vi} is the sum
Pn

i=1 �ivi for some scalars �i � 0 such thatPn
i=1 �i = 1.

5Since wi and vi+1 are vertices of the polytope P (I), we denote wi � a as setting the a coordinate of wi to 0.
Similarly for wi + a.



CHAPTER 3

Preliminaries

In this chapter we formally define our abstract optimisation problem, which we call the max-

imum facility location problem, and later give a linear relaxation that will be the basis of our

algorithms.

3.1 Maximum Facility Location

Let C be a set of clients and F be a set of facilities. Let w : C⇥F ! R be the weight of assigning

a given client to a given facility. Associated with every facility v 2 F is an interval I
v

on the real

line.

DEFINITION 1. A subset of facilities S ✓ F is independent if no two intervals in the set { I
v

: v 2 S }

overlap.

Finally, we use P to denote the set of endpoints of all intervals.

DEFINITION 2. For any non-empty subset S ✓ F , the value of S is given by

f(S) =
X

u2C
max

v2S
w
uv

. (3.1)

For completeness, we define f(?) = 0.

An instance of the maximum facility location problem is specified by a tuple (C,F,w, I). The

objective is to choose an independent subset S ✓ F maximising f(S). See Figure 3.1.

We now prove an important property about this objective function.

DEFINITION 3. A function f is submodular if 8A ✓ B ✓ F and 8v 2 F \B

f(A+ v)� f(A) � f(B + v)� f(B).

17
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FIGURE 3.1: Example instance of the maximum facility location problem, with
C = {u

1

, u
2

, u
3

, u
4

} and F = {v
1

, v
2

, v
3

}. The set of facilities we choose to open
must be independent. Therefore we can either pick {v

2

} or {v
1

, v
3

}. If we open
v
2

, then the value of our solution is 8. If we open v
1

and v
3

, then we get a better
solution (bold edges) with value 10.

LEMMA 1. The function f defined in (3.1) is monotone non-decreasing and submodular.

PROOF. Let A ✓ B ✓ F . Notice that max

v

02Aw
uv

0  max

v

02B w
uv

0 for all u 2 C. Summing

over all u 2 C we get f(A)  f(B). Therefore, f is monotone non-decreasing.

To prove the submodularity of f , consider a facility v 2 F \ B. We add v to both A and B and

analyse the gain in value for some arbitrary client u 2 C:

max

v

02A+v

w
uv

0 �max

v

02A
w
uv

0
= max(0, w

uv

�max

v

02A
w
uv

0
),

� max(0, w
uv

�max

v

02B
w
uv

0
) = max

v

02B+v

w
uv

0 �max

v

02B
w
uv

0 .

Summing over all u 2 C we get f(A+v)�f(A) � f(B+v)�f(B). Therefore, f is submodular.

⇤

3.2 Integer Program

Our integer program (IP) uses two type of variables. For each facility v 2 F , we have a facility

variable y
v

that indicates whether facility v is open. For each client u 2 C and facility v 2 F , we

have a client-facility variable x
uv

that captures whether u is assigned to v.

The integer program has three types of constraints. For each client u 2 C we have a constraint

enforcing that u is assigned to at most one facility. For each client u 2 C and facility v 2 F we
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have a constraint enforcing that if u is assigned to v then v is open. Finally, for each interval

endpoint p 2 P we have a constraint enforcing that we choose at most one of the facilities

whose intervals span p.

maximise
X

u2C,v2F
w
uv

x
uv

subject to
X

v2F
x
uv

 1 8u 2 C

x
uv

 y
v

8u 2 C, v 2 F
X

v2F :p2Iv

y
v

 1 8p 2 P

x
uv

2 {0, 1} 8u 2 C, v 2 F

y
v

2 {0, 1} 8v 2 F

(IP)

3.3 Linear Relaxation

Solving an integer program is NP-hard, and thus for large instances can take an extremely long

time to solve. While there are general heuristics such as the branch and bound method (Land

and Doig, 1960), in the worst case they still take exponential time.

To combat this problem, we turn our integer program (IP) in a linear program (LP) by relaxing

the variables. Instead of each variable taking a value in the set {0, 1}, we allow it to take any

real value in the range [0, 1]. While it doesn’t make sense to “open half a facility,” or “assign a

client to a third of a facility,” linear programs are much faster to solve. Our goal for the rest of

this thesis will then be designing algorithms that turn this fractional solution into an integral

solution.

maximise
X

u2C,v2F
w
uv

x
uv

subject to
X

v2F
x
uv

 1 8u 2 C

x
uv

 y
v

8u 2 C, v 2 F
X

v2F :p2Iv

y
v

 1 8p 2 P

x
uv

� 0 8u 2 C, v 2 F

y
v

� 0 8v 2 F

(LP)



CHAPTER 4

Algorithms

Now that we have defined the problem formally and stated the linear program, in this chapter

we will devise two new algorithms. Both of these algorithms involve solving (LP) to obtain

a fractional solution (x, y) and rounding to obtain an integral solution. The first is a 0.19-

approximation algorithm based off the work on Feldman and his contention resolution scheme

for maximising a submodular function subject over an interval graph (Feldman, 2013). The sec-

ond is a dependent rounding algorithm, based on the technique of pipage rounding as discussed

in Chapter 2, Section 2.3.4.

4.1 Independent Rounding

The first algorithm we present very simple. First, we compute an optimal fractional solution

(x, y) of the linear relaxation (LP). Then we create a set R ✓ F by placing each facility v 2 F

into R with probability ↵y
v

, where ↵ 2 [0, 1] is a parameter that will be chosen later to maximise

the approximation ratio in our analysis. Finally, we apply a filtering step that drops some

facilities so as to obtain an independent set T ✓ R.

Algorithm 1 Independent rounding with alterations.
function SELECT-AND-FILTER(↵)

(x, y) solve (LP)
R Select each v 2 F with probability ↵y

v

T  { v 2 R | @ v0 2 R such that start point of I
v

lies in I
v

0 }
return T

end function

It should be noted that the alteration step (where we go from R to T ) is the same as the con-

flict resolution scheme of Feldman (2013) that was developed for the more general problem

20
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of maximising a submodular function subject to the constraint that the set chosen is indepen-

dent in an auxiliary interval graph. As mentioned in Chapter 2, while this algorithm is a 0.25-

approximation, it is not practical as it requires that we solve the stronger multilinear relaxation

(see Equation (2.1) of Section 2.3.2) rather than the much easier linear relaxation (LP).

There is an intuition behind randomly selecting facilities with probability ↵y
v

. If some facility

v 2 F is assigned a value y
v

that is close to 1, then this would indicate that v contributes a

lot of value to the fractional solution. Therefore, it must have some importance and we want

to select it with high probability. On the other hand, if a facility has a y
v

value that is near 0,

then this would imply that it does not contribute much to the fractional solution. Therefore it

is acceptable to not open this facility in the integral solution.

The main result of this section is that this simple algorithm leads to a constant factor approxi-

mation.

THEOREM 1. There is an LP-rounding 0.19-approximation for maximum facility location.

The proof of this Theorem relies on a few auxiliary lemmas. First, we argue that the solution

T output is feasible. Then we argue that the expected value of the set R is at least a constant

factor of the value of the fractional solution (x, y). Finally, we show that the expected value of

T is at least a constant factor of the expected value of R.

LEMMA 2. The set T returned by SELECT-AND-FILTER is independent.

PROOF. Suppose, for the sake of contradiction, that T is not feasible. This means there are

in T two facilities v and v0 whose intervals intersect. Without loss of generality assume that the

start point of I
v

is to the right of the start point of I
v

0 . Since v0 2 T , it follows that v0 2 R. But

then v should not belong in T since the start point of I
v

lies in I
v

0 , a contradiction. ⇤

LEMMA 3. Let R be the set sampled by SELECT-AND-FILTER, then

E[f(R)] � (1� e�↵

)

X

u2C,v2F
w
uv

x
uv

.

PROOF. We focus on a fixed but arbitrary client u 2 C. Let us rename the facilities v
1

, v
2

, . . . , v
k

so that w
uv1  w

uv2  . . .  w
uvk , and define w

uv0 = 0. Finally, set w(u) = max

v2R w
uv

.
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We aim to show that E[w(u)], the contribution of u to E[f(R)], is at least a constant times
P

v2F w
uv

x
uv

, the contribution of u to the value of (x, y).

Let ˆY
v

be an indicator variable that is 1 if v 2 R and 0 otherwise, then

Pr[w(u) < w
uvi ] = Pr

2

4
k^

j=i

ˆY
vj = 0

3

5

=

kY

j=i

Pr[

ˆY
vj = 0] =

kY

j=i

(1� ↵y
vj )


 
1�

↵
P

k

j=i

x
uvj

k � i+ 1

!
k�i+1

,

where the last inequality follows from the arithmetic-mean geometric-mean inequality and the

feasibility of (x, y).

Let x̃ =

P
k

j=i

x
uvj and r = k � i + 1. We observe that the function a(x̃) = 1 �

�
1� ↵x̃

r

�
r

is concave on the interval x̃ 2 [0, 1], and thus can be lowerbounded by the linear function

b(x̃) =
⇥
1�

�
1� ↵

r

�
r

⇤
x̃. This is because a(0) = b(0) and a(1) = b(1). Therefore,

Pr[w(u) � w
uvi ] = 1� Pr[w(u) < w

uvi ]

� 1�
 
1�

↵
P

k

j=i

x
uvj

k � i+ 1

!
k�i+1

�
"
1�

✓
1� ↵

k � i+ 1

◆
k�i+1

#
kX

j=i

x
uvj

� (1� e�↵

)

kX

j=i

x
uvj .
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We now express E[w(u)] in terms of Pr[w(u) � w
uvi ]

E[w(u)] =
kX

j=1

w
uvj Pr[w(u) = w

uvj ]

=

kX

j=1

 
jX

i=1

w
uvi � w

uvi�1

!
Pr[w(u) = w

uvj ]

=

kX

i=1

kX

j=i

(w
uvi � w

uvi�1) Pr[w(u) = w
uvj ]

=

kX

i=1

(w
uvi � w

uvi�1) Pr[w(u) � w
uvi ]

Now we can use our bound on Pr[w(u) � w
uvi ] to lowerbound the expected value of w(u)

E[w(u)] =
kX

i=1

(w
uvi � w

uvi�1) Pr[w(u) � w
uvi ]

� (1� e�↵

)

kX

i=1

(w
uvi � w

uvi�1)

kX

j=i

x
uvj

= (1� e�↵

)

0

@
kX

i=1

kX

j=i

w
uvjxuvj �

kX

i=1

kX

j=i

w
uvi�1xuvj

1

A

= (1� e�↵

)

kX

j=1

x
uvj

jX

i=1

(w
uvi � w

uvi�1) = (1� e�↵

)

kX

j=1

x
uvjwuvj .

Finally, by linearity of expectation, we have

E[f(R)] =

X

u2C
E[w(u)] � (1� e�↵

)

X

u2C,v2F
x
uv

w
uv

,

which is precisely what we needed to prove. ⇤

LEMMA 4. Let R and T be the sets computed in SELECT-AND-FILTER then

E[f(T )] � (1� ↵)E[f(R)].

PROOF. Let v 2 F and p be the start point of I
v

. Let us start by estimating the probability

that v /2 T given that v 2 R. Recall that v is removed from R only if there exists v0 2 R such
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that p 2 I
v

0 . Therefore,

Pr[v 62 T | v 2 R] = Pr

2

664
_

v02F�v:
p2Iv0

v0 2 R

3

775 
X

v02F�v:
p2Iv0

Pr[v0 2 R] =

X

v02F�v:
p2Iv0

↵y
v

0  ↵,

where the first inequality follows from union bound, and the second from the feasibility of

(x, y). Therefore,

Pr[v 2 T | v 2 R] � (1� ↵). (4.1)

Vondrák et al. (2011) in Theorem 1.3 showed1 that (4.1) implies that

E[f(I)] � (1� ↵)E[f(R)],

when f is monotone submodular. From Lemma 1 we know that f is indeed monotone submod-

ular. ⇤

PROOF. (of Theorem 1) Let R and T be the sets chosen by SELECT-AND-FILTER. By Lemma 2

the set T is independent. Its expected value is

E[f(T )] � (1� ↵)E[f(R)] � (1� ↵)(1� e�↵

)

X

u2C,v2F
w
uv

x
uv

,

where the first inequality follows from Lemma 4 and the second inequality from Lemma 3.

The best approximation ratio is attained at ↵ = 0.44, where we get 0.199. ⇤

4.1.1 Algorithm Engineering

We briefly discuss two ideas for improving the observed performance of SELECT-AND-FILTER

without sacrificing its theoretical guarantees: Picking the optimal ↵ and resolve conflicts less

aggressively.

First, notice that our choice of ↵ in the proof of Theorem 1 may not be the best for a particular

instance. Instead of picking a single value of ↵ we pick the “best” ↵ as follows. For each v 2 F ,

1Although the proof cited uses a different set R no assumption is used in the proof other than R is a random
variable.
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we generate a random number r
v

2 [0, 1). In SELECT-AND-FILTER, we can think of a facility v

being added to the set R if r
v

 ↵y
v

. Therefore there are discrete values of ↵ for which we

add a new facility v to our set R. Let R
↵

= { v 2 F | r
v

 ↵y
v

} and ↵
1

< ↵
2

< · · · < ↵
n

be

the interesting values of ↵ when R
↵

changes; that is, ↵
j

= r
v

/y
v

for some v 2 F . Observe that

R
↵1 ⇢ R

↵2 ⇢ · · · ⇢ R
↵n . Then we can simply compute T

↵i for each value of ↵
i

and return the

set maximising f(T
↵i).

Second, recall that the algorithm resolves conflicts of R by keeping only those facilities whose

start point is not contained in another interval in R. Consider a maximal subset A ✓ R such

that the union of their intervals forms a single interval. For each such A, the filtering step

of SELECT-AND-FILTER would only place the facility in A with the leftmost start point into T .

Instead, we can be less aggressive and pick a maximal independent subset of A that includes

the leftmost interval. Thus, we are guaranteed to pick an independent set that is a superset

of the set chosen by the simple version. However, just because we choose a superset, does not

mean we have designed an algorithm with a better approximation ratio. Consider the interval

graph in Figure 4.1. In both the original and modified algorithm, both methods are only able to

select the left-most interval, as it overlaps with every other interval.

FIGURE 4.1: An instance where both Feldman’s contention resolution scheme
(Feldman, 2013) and our modified scheme can only select a single interval. In
this case only the left-most interval will be selected.

4.2 Dependent Rounding

Our second algorithm uses a more refined rounding routine. Instead of sampling and removing

intervals that have conflicts, we gradually shift the fractional solution to an integral using a

dependent rounding (Gandhi et al., 2006) routine.

Before we can describe the algorithm we need a few definitions. Given a solution (x, y) to (LP),

let S = { v 2 F | 0 < y
v

< 1 } be the set of facilities with a non-integral value.
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DEFINITION 4. For a point p 2 P , let slack(p) denote the slack of its corresponding constraint in

(LP)

slack(p) = 1�
X

v2F :p2Iv

y
v

.

DEFINITION 5. A point p 2 P is tight if slack(p) = 0.

Algorithm 2 Dependent rounding.
function DEPENDENT-ROUNDING

(x, y) solve (LP)
while 9 non-integral facility do

S  { v 2 F | 0 < y
v

< 1 }
M

1

,M
2

 SELECT-SUBSETS(S, y)
For each i = 1, 2 set P

i

 points that intersect an interval in M
i

" min

�
min

p2P1\P2
slack(p),min

v2M2 yv
�

�  min

�
min

p2P2\P1
slack(p),min

v2M1 yv
�

For each v 2 F set y0
v

=

8
><

>:

y
v

� �, v 2M
1

,

y
v

+ �, v 2M
2

,

y
v

, otherwise.

For each v 2 F set y00
v

=

8
><

>:

y
v

+ ", v 2M
1

,

y
v

� ", v 2M
2

,

y
v

, otherwise.

y =

(
y0 with probability "

"+�

y00 with probability �

"+�

end while
return { v 2 F | y

v

= 1 }
end function

Our algorithm starts by finding an optimal fractional solution (x, y) to the linear relaxation (LP).

Then we iteratively modify this solution as follows. First, we select two disjoint independent

subsets M
1

,M
2

⇢ S. Then, we randomly update the y-values of facilities in M
1

[M
2

so that at

least one more facility is integral or at least one more point is tight. This is repeated until there

are no more fractionally opened facilities.

Let us describe in more detail how the update is carried out. For i = 1, 2, let P
i

✓ P be those

points that intersect an interval in M
i

. We compute the following two quantities

" = min

✓
min

p2P1\P2

slack(p), min

v2M2

y
v

◆
,

� = min

✓
min

p2P2\P1

slack(p), min

v2M1

y
v

◆
.
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Finally, with probability "

"+�

we replace the current fractional solution y with a new solution

y0
v

=

8
>>>><

>>>>:

y
v

� �, v 2M
1

,

y
v

+ �, v 2M
2

,

y
v

, otherwise.

Otherwise, with complementary probability �

"+�

, we replace y with the new solution

y00
v

=

8
>>>><

>>>>:

y
v

+ ", v 2M
1

,

y
v

� ", v 2M
2

,

y
v

, otherwise.

The pseudocode of the main routine is given in Algorithm 2 while the pseudocode for picking

M
1

and M
2

appears in Algorithm 3.

Algorithm 3 Creating subsets M
1

and M
2

.
function SELECT-SUBSETS(S, y)

eP  the set of tight points in S sorted from left to right
v
1

 a facility in S whose interval the has leftmost start point
v
2

 a facility in S � v
1

whose interval starts at the first tight point in eP
M

1

 { v
1

}
M

2

 { v
2

}
for every tight point t in eP (in sorted order) do

if I
v1 contains t and I

v2 contains t then
continue

end if
v  the facility in S whose interval starts at t
if I

v2 contains t then
M

1

 M
1

+ v
v
1

 v
else if I

v1 contains t then
M

2

 M
2

+ v
v
2

 v
else

break
end if

end for
return M

1

,M
2

end function

The following Theorem is the main result of this section.
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I
v2

I
v1 I

v

t

FIGURE 4.2: The case when only one of the intervals stabs the next tight point.
Let I

v

be the interval starting at point t. If t only intersects I
v2 , then since we

scan from left to right, I
v

cannot possibly intersect I
v1 .

THEOREM 2. Let T be the set returned by DEPENDENT-ROUNDING. Then T is independent and

Pr[v 2 T ] = y
v

for all v 2 F .

We break the analysis into a series of lemmas. First, we prove some properties of the output of

SELECT-SUBSETS. Then, we prove that the expected value of the fractional solution at the end

of an iteration equals its value at the beginning of the iteration. Finally, we show that in each

iteration we either gain an additional integral facility or a new tight point.

LEMMA 5. Let M
1

and M
2

be the sets computed by SELECT-SUBSETS. Then M
1

and M
2

are disjoint

and both are independent. Furthermore, if p 2 P is a tight point then either p stabs both M
1

and

M
2

, or none of them.

PROOF. Observe that every tight point must occur at an interval start point. Let v
1

be the

facility whose interval I
v

is the first in S (from left to right). If the first tight point is to the right

of the start point of I
v1 then I

v2 is well-defined. Otherwise, if the start point of I
v1 is tight there

must be another facility starting at that point (since S is the set of non-integral facilities) so I
v2

is well-defined in this case too.

Now that we have shown the invariant holds after initialisation, we aim to prove that M
1

and

M
2

are independent. To do this, we need to show that the loop invariant also holds at the end

of each iteration. Consider the next tight point t and facility v starting at t. Suppose t stabs I
v2

only but it does not stab I
v1 . Since we scan from left to right, I

v1 is to the left of t and I
v

starts at

t, as shown in Figure 4.2. Therefore we can add v to M
1

correctly and update v
1

= v. The case

when t stabs I
v1 but not I

v2 is handled in a similar fashion, but adding v to M
2

and updating

v
2

= v. Finally, if t stabs both I
v1 and I

v2 , we continue to the next tight point; otherwise, if t
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stabs neither I
v1 or I

v2 , the algorithm stops. Clearly there are a finite number of tight points,

therefore the loop will eventually terminate. Thus the invariant holds throughout.

Now consider a tight point p 2 P . If p was never considered by the for loop then p is strictly

to the right or to the left of every interval in M
1

[M
2

, and thus does not stab any of them.

Otherwise, in the iteration when p was considered by the algorithm it either intersected both

I
v1 and I

v2 , in which case we are done, or it added v so that the property holds. ⇤

LEMMA 6. Consider an iteration of DEPENDENT-ROUNDING. Let y be the fractional solution at

the beginning, and ŷ be the solution at the end of the iteration. Then for every v 2 F we have

E[ŷ
v

] = y
v

. Furthermore, ŷ obeys the independence and non-negativity constraints of (LP).

PROOF. If we have a facility v 2 F that is not in M
1

or M
2

, then it is clear that the equality

holds as its value does not change. For each facility v 2M
1

we have

E[ŷ
v

] =

✓
"

"+ �

◆
(y

v

� �) +

✓
�

"+ �

◆
(y

v

+ ")

=

"y
v

� "� + �y
v

+ "�

"+ �

= y
v

.

A similar argument applies for facilities v 2M
2

.

Notice that ŷ
v

� 0 by our definition of " and � since each of these values is less than or equal to

the minimum y-value of the subset of variables that are decreased in each case.

Finally, let us now argue that y obeys the independence constraints of (LP). Let p 2 P be an

arbitrary point. If p 2 P
1

\ P
2

then its constraint is obeyed since the increase/decrease of a

facility in M
1

that it stabs is compensated with a corresponding decrease/increase of a facility

in M
2

that it stabs. If p 2 P
1

\ P
2

then by the definition of " the independence constraint at p is

obeyed. Similarly, if p 2 P
2

\ P
1

then by the definition of � the independence constraint at p is

obeyed. Finally, p /2 P
1

[P
2

then the slack of p does not change so the independence constraint

at p is obeyed as well. ⇤

LEMMA 7. In each iteration of DEPENDENT-ROUNDING we either gain a new integral facility or a

new tight point.
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PROOF. Let us argue that " > 0 and � > 0. Note that min

v2M2 yv > 0 since all facilities in

M
2

are non-integral, and that min

p2P1\P2
slack(p) > 0 since all tight points that stab M

1

also

stab M
2

. Putting these two facts together, we get " > 0. A similar line of reasoning yields � > 0.

Therefore, no matter what type of update we perform, we always move to a different fractional

solution.

Suppose that the algorithm replaces y with y0. Furthermore, assume that � = y
v

for some

v 2 M
1

. It follows that y0
v

= 0, so we gain a new integral facility. Similarly, assume that

� = slack(p) for some p 2 P
2

\ P
1

. After the update the slack at p will be 0, so we gain a new

tight point since by Lemma 5 the point p cannot be tight. Therefore, either y0 has one additional

integral facility, or one additional tight point. A similar argument shows that the same holds if

the algorithm decides to replace y with y00. ⇤

PROOF. (Of Theorem 2) By Lemma 7, in each iteration we either gain one additional inte-

gral facility or one additional tight point. Therefore, after 2|F | iterations the algorithm must

terminate with an integral solution ŷ.

By Lemma 6, in each iteration we maintain feasibility. It follows that the set T = { v 2 F | ŷ
v

= 1 }

is feasible. Finally, we show that Pr[v 2 T ] = y
v

for all v 2 F . Let yi
v

be the value of a facility

v 2 F at the end of iteration i of the algorithm. We define y0
v

= y
v

and y2|F |
v

= ŷ
v

. From

Lemma 6, we know that 8i � 0 : E[yi+1

v

] = yi
v

. Let v 2 F be a facility in M
1

in the last iteration.

At this point, we can either increase the value of v by some " such that ŷ
v

= 1 or decrease the

value by � such that ŷ
v

= 0. Therefore

y
v

= y0
v

= E[y1
v

] = . . . = E[ŷ
v

]

= Pr[ŷ
v

= 1](y2|F |�1

v

+ ") + Pr[ŷ
v

= 0](y2|F |�1

v

� �)

= Pr[ŷ
v

= 1] = Pr[v 2 T ].

This property also holds for any facility v 2 M
2

. If a facility v 2 F was assigned an integral

value by (LP), then it is easy to see that this property also holds. ⇤

In terms of the differences between these two algorithms discussed, they both exhibit a trade-

off in solution quality versus time. The first algorithm (independent rounding) presented has

a theoretical bound, however will often be slower than the second, as for large instances we

need to evaluate the objective function in (3.1) many times. On the other hand, the runtime of



4.2 DEPENDENT ROUNDING 31

the second algorithm (dependent rounding) is dependent on the number of tight points in the

instance. Therefore for instances with a small number of tight points, the dependent algorithm

will most likely have a faster running time.

We close this section by noting that while the output set T is independent and Pr[v 2 T ] = y
v

,

we cannot prove the guarantee of Lemma 3 for E[f(T )] since the rounding decisions are not

independent of one another. However, we can show that this algorithm admits a non-constant

approximation.

THEOREM 3. The algorithm DEPENDENT-ROUNDING admits a non-constant approximation.

PROOF. For some integer k, consider the following interval graph in Figure 4.3.

I
1,1

I
1,2

I
1,k

. . .

I
2,1

I
2,2

I
2,k

. . .

I
k,1

I
k,2

I
k,k

FIGURE 4.3: An instance that leads to a non-constant approximation. The
DEPENDENT-ROUNDING algorithm will only ever open one row of intervals. The
optimal solution is to open the intervals I

1,1

, I
2,2

, . . . , I
k,k

across the diagonal.

Define U
i

= { I
i,j

| j 2 [1, k] } for some i 2 [1, k]. Create k clients u
1

, u
2

, . . . u
k

. For each client

u
i

, assign it to every facility that corresponds to the interval in the set U
i

with weight 1. This

means to satisfy a client u
i

, we only need to open one facility whose interval is in the set U
i

.

The optimal solution is to open the facility corresponding to interval I
1,1

, then I
2,2

and so on

until I
k,k

. Therefore the value of the optimal solution is k. On the other hand, an optimal

fractional solution to this problem is to assign every facility a value of 1/k.

Now consider the first iteration of DEPENDENT-ROUNDING. It is easy to see that M
1

= U
1

and

M
2

= U
2

. When the rounding occurs, we will either shift all of the facilities in M
1

up to a

value of 2/k or vice versa. This process is continued until every facility in U
j

has a value of 1

(for some 1  j  k), and every facility in every other row U
i

has value 0 for i 6= j. Since we

only opened a single row, we can only connect a single client u
j

, for a cost of 1. Therefore this

instance results in a 1/k-approximation, which is non-constant. ⇤
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4.3 Hardness

We conclude this chapter by proving an inapproximaibiltiy result for the maximum facility lo-

cation problem, by reducing from the the maximum coverage problem.

4.3.1 Reducing from Maximum Coverage

In the maximum coverage problem we are given an integer k, a universe U = {u
1

, u
2

, . . . , u
n

},

and a collection of subsets S = {S
1

, S
2

, . . . , S
m

} such that 8S 2 S : S ✓ U . Our goal is to select

a collection C ✓ S of these subsets, where |C|  k and we maximise the quantity
������

[

Si2C
S
i

������
.

A simple greedy algorithm is to pick a set S at each iteration (while |C| < k) maximising

|S\ [
T2C T |. This method results in a

�
1� 1

e

�
-approximation algorithm. Furthermore, we know

that there is no polynomial algorithm for this problem with a ⇢-approximation for ⇢ >
�
1� 1

e

�

unless P = NP (Feige, 1998; Khuller et al., 1999).

To begin the reduction to maximum facility location, we create a client c
u

for each element

u 2 U . The main constraint we model is that we can only pick at most k subsets from our

collection S. Therefore we create km facilities. For each subset S 2 S, we create the fa-

cilities �
S,1

,�
S,2

, . . . ,�
S,k

representing the subset S. From these facilities, we form k cliques

in the interval graph such that for every value of i 2 [1, k], every pair of intervals in the set

{ I
�S,i | S 2 S } is overlapping. This ensures that we can only choose to open one facility (i.e.

select one subset from the collection) from each clique, and this can be done at most k times.

If an element u 2 U is in a set S 2 S, then we add the edges

(c
u

,�
S,1

), (c
u

,�
S,2

), . . . , (c
u

,�
S,k

)

all with weight 1. See Figure 4.4. This means that once we choose to open the facility �
S,i

, we

are essentially covering all of the elements u0 2 S, by assigning all of the clients c
u

0 to �
S,i

.

LEMMA 8. In the reduction above, the value of the maximum facility location instance equals the

value of the maximum coverage instance.
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U = {u
1

, u
2

, u
3

} ,
S = {S, T } ,
S = {u

1

, u
2

} ,
T = {u

2

, u
3

}

c
u1

c
u2

c
u3

�
S,1

�
T,1

�
S,k

�
T,k

k times

Interval graph
I
�S,1 I

�S,2
I
�S,k

. . .

I
�T,1 I

�T,2 I
�T,k

FIGURE 4.4: An example reduction from the maximum coverage problem to the
maximum facility location problem. In this instance, there are three elements
(u

1

, u
2

and u
3

) and two subsets (S and T ). Given an integer k, create k inter-
vals for each subset and create k cliques. In each clique, every pair of intervals
overlap. This means we can select at most k subsets.

PROOF. Let � be the set of facilities opened and C
�

be the corresponding subsets we choose

from the collection S. Since we can pick at most one facility from each clique, and there are k

of them, it follows that |C
�

|  k.

In order to argue that the values are the same, we observe that by opening a facility �
S,i

, we

allow all of the clients connected to �
S,i

to be assigned. Since all of the edge weights are 1, this

corresponds to how many elements we cover if we select the subset S. The second observation

is that the instance cannot benefit by opening the facility �
S,i

and �
S,j

for j 6= i, as a client

can only be assigned to a single open facility. This directly corresponds to covering no new

elements. ⇤

THEOREM 4. For any " > 0, there is no (1 � 1/e + ")-approximation algorithm for maximum

facility location, unless P = NP.

PROOF. The result follows from Lemma 8 and the inapproximability result (Feige, 1998;

Khuller et al., 1999), for maximum coverage. ⇤



CHAPTER 5

Conflicting Predictions from Multi-mapping Reads

In this chapter we present an application of the maximum facility location problem. Ultra-

high-throughput next-generation sequencing (NGS) technology allows researchers to rapidly

sequence millions of DNA molecules, at a decreasing cost. These NGS instruments generate a

huge number of short DNA sequences, known as ‘reads’. If a high-quality reference genome

is available for the sequenced organism, then one may try to map the reads from the donor

genome back to their origin in the reference genome.

While this task sounds simple, it is in fact obfuscated by errors in sequencing, differences be-

tween the reference and donor genome, and other factors that may increase the difficulty of

determining a reads origin in the reference genome. Typically, this means that a read may map

to multiple (plausible) places in the reference gnome.

In this chapter, we will demonstrate how our work can be applied to this scenario. More pre-

cisely, our aim is to model the prediction of deletions from paired-end reads. These paired-end

reads are obtained by sequencing both ends of DNA fragments of a donor genome that are

‘roughly’ of a certain size. A mapping of these two reads to the reference genome at a distance

that is larger than what is expected indicates a potential deletion in the genome. The confidence

in a mapping of a read is expressed by an alignment score that captures characteristics such as

mismatches, and the likelihood of the fragment length according to the estimated fragment

length distributions. See Figure 5.1.

Essentially, our goal is to assign these multi-mapping reads to high-quality alignments then in

turn implies a set of conflict-free predictions. However, in order to apply the work thus far, we

make the assumption that these predictions are represented by genomic intervals. This means

that two predictions are in conflict if (and only if) their corresponding intervals overlap.

34
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Ref

Donor

FIGURE 5.1: Alignments supporting conflicting deletions. Two reads (arrow
heads) are connected by a curved line which represents a paired-end read. The
two reads map to the reference genome (solid lines) at a distance larger than
the distance between the sequenced ends (reads) of the donor fragments, indi-
cating a potential deletion. Alternative wrong alignments (dotted lines) support
an incorrect deletion that overlaps the correct deletion to the left and thus the
two deletions cannot occur simultaneously on the same allele.

In the following sections, we first discuss how we model this problem as the maximum facility

location problem. Afterwards, we discuss the implementation of the two algorithms discussed

in Chapter 4. In Section 5.4, we run our algorithms on two main data sets in order to show the

effectiveness of our algorithms and discuss the results.

5.1 Modelling the Problem

In this application, one can see that facilities correspond to candidate deletions (intervals) in

the reference genome, while clients correspond to paired-end reads in the donor genome. A

client (read) can be assigned to the facilities (deletions) that are supported by one of its edges

(mappings). Assigning a client to a facility contributes the corresponding read alignment score

to the overall weight. Therefore, starting from an initial set of candidate deletions, the optimal

solution aims to find an independent set of facilities that minimise the number of false-positive

predictions while maximising the number of true position deletions.

One can see that this problem is exactly the maximum facility location problem. Thus, we can

apply the algorithms and techniques discussed here to this scenario. See Figure 5.2.
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F

C

wuv

FIGURE 5.2: Clients C and facilities F represent paired-end reads and candi-
date deletions, respectively. Each facility is associated with an interval whose
endpoints correspond to the breakpoints of the candidate deletion. Edges be-
tween clients and facilities indicate alignments supporting the corresponding
deletion. Our confidence in the alignment is captured by a score w. A feasible
solution (bold edges) to the maximum facility location problem assigns reads to
an independent set of facilities.

5.2 Implementation

The implementation for this project was done in Java 8. The solver Gurobi (Gurobi, 2015) was

used to solve the integer and linear programs. Essentially, the implementation is broken into

two major components.

(1) The algorithms package. This package contains the implementation of all algorithms.

These include the independent rounding algorithm (optimalResolveContentions,

Section 4.1), the dependent rounding algorithm (alternateRoundingScheme, Sec-

tion 4.2) and an additional implementation of the independent rounding algorithm

that uses Feldman’s conflict resolutions scheme (optimalResolveContentionsFeldman)

(Feldman, 2013). Two additional greedy algorithms (simpleGreedy, Section 5.3) were

also implemented to compare these current algorithms to our new methods. As a base-

line, the integer program (IP) was also implemented (solveInstance).

(2) The utilities package. Classes such as the Facility class (containing information such

as it’s name, and the interval’s start and end point), the Client class (containing it’s

name, and the cost of assigning a client to a facility) and an Instance class (which

stores an array of both the facilities and clients in the instance).

See Figure 5.3 for a more precise breakdown. In the class diagram, each class has it’s own set of

useful functions. For example, the Facility class has the function intersectsFacility to de-

termine if a two facilities v and v0 have their corresponding intervals overlap. Two other useful
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0..*

1

0..*

1

+addCost(f: Facility, cost: Double): void

-name: String
-costs: HashMap<Facility, Double>

Client

+addClient(client: Client): void
+containsPoint(point: Double): Boolean
+intersectsFacility(other: Facility): Boolean

-start: Double
-end: Double
-name: String
-clients: Set<Client>

Facility

+addFacility(facility: Facility): void
+addClient(client: Client): void
+evaluateFunction(facilities: Set<Facility>): Double
+getAssignments(facilities: Set<Facility>): HashMap<Client, Facility>

-clients: ArrayList<Client>
-facilities: ArrayList<Facility>

Instance

+solveInstance(instance: Instance): void
+optimalResolveContentions(instance: Instance): void
+optimalResolveContentionsFeldman(instance: Instance): void
+alternateRoundingScheme(instance: Instance): void

-facilityVariables: HashMap<Facility, Double>
-clientFacilityVariables: HashMap<Client, HashMap<Facility, Double>>
-objective: Double

Solver

+simpleGreedy(instance: Instance, cardinality: Boolean): Set<Facility>
-conflictsExist(facilities: ArrayList<Facility>, newFacility: Facility): Boolean

SimpleGreedy

Solves

Solves

FIGURE 5.3: A simplified class diagram of the implementation. An Instance

contains an array of facilities and clients. Each Facility object has an ID (name),
start and end point of the associated interval, and the list of clients that are
connected to the facility. A Client object has an ID (name), and a hash map
(v, w) where v is the facility object and w is the cost of assigning the client to
facility v. The two classes Solver and SimpleGreedy are responsible for solving
instances of the problem.

functions are located in the Instance class. The first is evaluateFunction, which evaluates the

objective function (3.1) given a subset of facilities. The getAssignments function returns the

assignments of clients to facilities, given a subset of non-overlapping facilities. In other words,

given a set S ✓ F , it returns the map �
S

: C ! S. More precisely, �
S

: u 7! argmax

v2S w
uv

.
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5.3 Related Work

Before discussing the experiments that were conducted, we briefly discuss some related work

in the field. The conflicts between structural variants (SV) were first studied by Hormozdiari

et al. (2009). Originally, overlapping structural variants were heuristically filtered in a post-

processing step. However, the authors then integrated their conflict resolution method in follow

up work (Hormozdiari et al., 2010). Furthermore, they show that the resulting combinatorial

problem is NP-hard and propose a heuristic greedy algorithm. The algorithm they propose,

which we will call GREEDY, is described in Algorithm 4.

Algorithm 4 The greedy algorithm described by Hormozdiari et al. (2010).
function GREEDY(F,C,w, I)

T  ?
while 9v 2 F : I

v

does not conflict with any intervals in { I
v

0 | v0 2 T } do
v?  the facility in F\T that covers the most new clients
T  T + v?

end while
return T

end function

In addition to this, we also decided to implement a variation of the greedy algorithm, known

as WEIGHTED-GREEDY. The key difference is that WEIGHTED-GREEDY takes into account the

weights between clients and facilities, rather than simply selecting facilities which cover the

most amount of clients.

Algorithm 5 The greedy algorithm described by Hormozdiari et al. (2010).
function WEIGHTED-GREEDY(F,C,w, I)

T  ?
while 9v 2 F : I

v

does not conflict with any intervals in { I
v

0 | v0 2 T } do
v?  the facility in F\T that maximises f(S + v?)� f(S)
T  T + v?

end while
return T

end function

Finally, Feldman (2013) provided a 0.25-approximation based on rounding a fractional solution

of the multilinear relaxation for f (see Section 2.3.2). Unfortunately, as discussed in Chapter 2,

the current best algorithms for finding good solutions are impractical due to their high-degree-

polynomial running time.
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5.4 Experiments

To evaluate both the existing algorithms formulated by Hormozdiari et al. (2010) and ours, we

ran the algorithms on two data sets. All of the experiments were run on a quad-core Intel Core

i7 processor running at 2.7 GHz with 16GB of RAM.

In order to measure the performance of the algorithms, we look at the predicted deletions versus

actual deletions and compare the recall and precision. We will define a predicted deletion to be

a true positive TP if it overlaps with a true deletion and differs in length by no more than 100

base pairs (bp). From there, the definitions of a false positive FP , false negative FN and true

negative TN follow. We can then define the precision P and recall R,

P =

TP

TP + FP
, and R =

TP

TP + FN
.

However, we can observe that by this definition, there could be one predicted deletion which

covers multiple true deletions or vice versa. Since our aim is to build a one-to-one correspon-

dence between predicted and actual deletions, we can build a bipartite graph B = (V, U ;E)

where V is the set of predicted deletions, U is the set of true deletions and (i, j) 2 E if and only

if deletions corresponding to i 2 V and j 2 U overlap and their lengths differ by no more than

100 bp. Therefore, we can compute a maximum (cardinality) matching M . This means the set

of all true positive predictions corresponds to all i 2 V , where (i, j) 2M for some j 2 U .

5.4.1 Simulated Reads: Craig Venter

The first data set we simulate our algorithms on was designed by Marschall et al. (2012),

which is based on Craig Venter’s genome. In their paper, the authors proposed a new tool

known as CLEVER (clique-enumerating variant finder) which is able to determine statistically

significant deletions. These deletions then form an instance of the maximum facility location

problem, and can be fed into our algorithms. From these opened facilities, we can derive

our predicted deletions in Venter’s genome. Note that CLEVER is just one tool that discovers

structural variants. However, there is no reason that any other SV discovery method such as

VariationHunter (Hormozdiari et al., 2009), GASV (Sindi et al., 2009), BreakDancer (Chen

et al., 2009), HYDRA (Quinlan et al., 2010), MoDIL (Lee et al., 2009), PINDEL (Ye et al., 2009)

or SV-seq2 (Zhang et al., 2012) could be used here.
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TABLE 5.1: Recall and precision achieved by the different algorithms when
provided with the candidate predictions of CLEVER (Marschall et al., 2012)
(CLEVER-cand) on the simulated Craig Venter data set. We report recall for
deletions of different length in a-b bases (Rec. a-b) as well as overall recall and
overall precision. The last column gives the total running time in minutes.

Rec. 20-49 Rec. 50-99 Rec. 100-50kb Recall Precision runtime
CLEVER-cand 66.80 79.47 68.49 68.91 9.93 N/A
Independent 62.37 75.30 66.29 65.02 40.63 15.8
Dependent 63.10 75.96 66.32 65.59 40.49 4.5
IP 63.46 75.96 66.26 65.80 40.26 10.4
Greedy 63.02 75.14 66.42 65.44 41.47 1840.0
wGreedy 62.86 74.97 66.29 65.29 41.42 4095.0

The results of this experiment is given in Table 5.1. The table shows the recall and precision

of various algorithms. As discussed in the previous paragraph, each algorithm was provided

with all significant deletions produced by CLEVER (Marschall et al., 2012) (CELEVER-cand).

We ran this simulated data on the SELECT-AND-FILTER algorithm with the added alterations

discussed in Section 4.1.1 (Independent), the DEPENDENT-ROUNDING algorithm (Dependent),

the GREEDY algorithm (Greedy) and the WEIGHTED-GREEDY, algorithm (wGreedy). Since the

instances were reasonably small, we also solved the integer program (IP) using Gurobi (Gurobi,

2015) for benchmarking purposes.

Similar to the evaluation by Marschall et al. (2012), we consider deletions of a particular range.

Specifically, ranges of size 20-49 bp (8502 true deletions), 50-99 bp (1822 true deletions) and

100-50000 bp (2996 deletions). Note that since the precision P requires the calculation of

the number of false positives, which relies on the overall truth set, we report only the global

precision. Refer to Table 5.2 for the size of each instance.

All methods are able to reduce the number of false positive calls made by CLEVER (CLEVER-

cand in Table 5.1) significantly, at only a small cost in recall. The very similar accuracy of the

predictions obtained by the maximum facility location algorithms and the greedy algorithms is

remarkable, since they are based on different mathematical models. While the latter seeks a

minimal set of deletions (facilities) to explain all reads, the algorithms developed in this work

rely exclusively on alignment scores and conflicts between deletions and do not impose any

further assumptions.
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TABLE 5.2: The number of clients, facilities and edges for each Chromosome (1
to Y) in Craig Venter’s genome.

Clients Facilities Edges
1 27490 11790 117577
2 29164 12136 120904
3 21891 9265 91488
4 25733 10584 102946
5 21297 9077 90053
6 22495 9626 90902
7 22733 9741 94009
8 19027 8020 77575
9 13439 5556 51817
10 20595 9271 89273
11 18604 8038 77780
12 17823 7619 73013

Clients Facilities Edges
13 15213 6651 64483
14 10337 4341 43081
15 9717 3884 39924
16 11611 5161 49446
17 13193 5884 58176
18 12442 5440 51497
19 11625 5346 51337
20 9767 4222 39438
21 5894 2599 23426
22 7079 3270 32364
X 9362 4010 37557
Y 424 169 1261

In terms of runtime performance, the most notable trend is that the greedy heuristics were two

orders of magnitude slower than the LP rounding heuristics, taking days rather than minutes to

find a solution. This is because the greedy algorithms need to evaluate the objective function

(3.1) many times, which can be expensive for large instances. Compare this to our solutions

which solve a linear program and evaluate the objective function a few times. Surprisingly,

the IP solver showed a performance comparable to our heuristics. This is probably due to the

fact that the IP approach involves a single call to the highly optimised Gurobi (Gurobi, 2015)

software library written in C, while our implementation uses Java. Nevertheless, we expect our

rounding algorithms to scale better on larger instances.

Placing aside the precision and recall of our algorithms, we can also look at the gap in value

between our algorithms and the optimal solution (provided by the IP). This is useful because it

allows us to evaluate our algorithms from a theoretical perspective. Let � be the value of the

optimal solution to (IP) and S ✓ F be some independent set of facilities produced by one of the

algorithms. Then the gap in between the value of the optimal solution � and the value realised

by the set S is
|�� f(S)|

�
.

The results for chromosomes 1 to Y are given in Table 5.3. It is clear from the data that the

dependent rounding algorithm is the clear winner, producing solutions that are all only 0.5%

below the optimal solution. One can see that (surprisingly) the value of all algorithms are
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TABLE 5.3: The value of each algorithm, for each chromosome in the Craig Ven-
ter simulated data. The relative gap between the value of the optimal solution
(IP) and each algorithm is given in brackets (as a percentage).

IP Independent Dependent Greedy wGreedy

1 24550 24438 (0.45) 24505 (0.18) 24026 (2.13) 24035 (2.10)

2 26039 25927 (0.43) 25962 (0.29) 25504 (2.05) 25442 (2.29)

3 19634 19527 (0.54) 19597 (0.19) 19262 (1.89) 19262 (1.89)

4 22861 22797 (0.28) 22837 (0.10) 22461 (1.75) 22442 (1.83)

5 18902 18851 (0.27) 18875 (0.14) 18500 (2.12) 18509 (2.08)

6 20239 20154 (0.42) 20196 (0.21) 19849 (1.93) 19866 (1.84)

7 20141 20015 (0.63) 20099 (0.21) 19725 (2.06) 19743 (1.98)

8 16989 16893 (0.56) 16921 (0.40) 16594 (2.32) 16656 (1.96)

9 11956 11926 (0.25) 11928 (0.23) 11764 (1.60) 11737 (1.83)

10 18350 18256 (0.51) 18325 (0.14) 17957 (2.14) 17958 (2.13)

11 16715 16617 (0.58) 16686 (0.17) 16325 (2.33) 16341 (2.23)

12 15914 15846 (0.42) 15879 (0.22) 15593 (2.01) 15597 (1.99)

13 13667 13562 (0.77) 13614 (0.39) 13372 (2.16) 13387 (2.05)

14 9308 9271 (0.40) 9297 (0.12) 9125 (1.96) 9141 (1.79)

15 8717 8669 (0.55) 8690 (0.31) 8552 (1.89) 8556 (1.85)

16 10283 10181 (1.00) 10257 (0.26) 10074 (2.04) 10062 (2.15)

17 11568 11518 (0.43) 11536 (0.28) 11325 (2.10) 11320 (2.14)

18 11105 11054 (0.46) 11086 (0.17) 10911 (1.74) 10914 (1.72)

19 10134 10056 (0.77) 10101 (0.33) 9933 (1.98) 9926 (2.05)

20 8755 8702 (0.61) 8723 (0.37) 8557 (2.27) 8561 (2.22)

21 5289 5265 (0.45) 5287 (0.04) 5169 (2.27) 5158 (2.47)

22 6261 6189 (1.15) 6249 (0.19) 6072 (3.02) 6082 (2.85)

X 8412 8393 (0.23) 8405 (0.08) 8260 (1.81) 8255 (1.87)

Y 369 369 (0.00) 369 (0.00) 365 (1.08) 366 (0.81)

quite high, producing nearly optimal solutions. To explain this, one can look at the instances

themselves. A simple visualiser was implemented on top of the existing Java code base to look at

the interval graph. From this, we observed that in all instances, the interval graph is extremely

sparse with few cliques (sets of intervals that all overlap each other). On average, each clique

contained about 2-3 intervals, and the average length of the clique was 40-60. Furthermore, the
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average distance between each clique is about a gap of 40000-50000. In order to further aid the

explanation, we performed further analysis on how the clients were assigned to these facilities.

On average, a client was assigned to 3-4 facilities in a single clique 65% of the time. While the

remaining 35% of the time, a client was assigned to roughly 5 facilities across multiple cliques

(usually 2-3 cliques).

This leads us to the explanation that since there aren’t many conflicting intervals, any simple

method can solve the instances well. This primarily explains why the greedy method performs

so well. In the instance where there’s a large clique, many clients are usually assigned to many

of the facilities in this clique, so picking any of their intervals will work. On the other hand,

clients who are assigned to many facilities across a few cliques will also be satisfied as we can

just pick a facility from any clique.

5.4.2 Illumina Reads: NA12878

In order to further demonstrate the utility of our algorithms in this application, we now turn to

a real data set. We evaluate our methods on publicly available Illumina sequencing data of the

NA12878 genome.1 As before, we run CLEVER (Marschall et al., 2012) on this data and feed

the statistically significant deletions predicted into our algorithms as the set of facilities. From

facilities opened by the algorithms, we can derive the set of predicted deletions in NA12878’s

genome.

Since this data is not simulated, it is harder to look at the precision and recall since we don’t

have the exact ground truth (i.e. the set of true deletions). However, there are two truth sets

currently available, created by Layer et al. (2014). The first truth set, known as 1000G contains

3376 non-overlapping deletions validated in NA12878 by Mills et al. (2011). The second truth

set, called long-read, contains 4095 deletions. Refer to Table 5.5 for the instance size of each

chromosome in the NA12878 genome.

Recall and precision are defined by matching predicted and true deletions as described at the

beginning of this section. However, for this real data set we do not know the complete set

of true deletions. Therefore we applied the following precision correction to the output of all

benchmarked methods. Let D be the set of predicted deletions (opened facilities). Predicted

1This genome is from the European Nucleotide Archive, ERA172924. See ebi.ac.uk/ena/data/view/ERA172924.

http://www.ebi.ac.uk/ena/data/view/ERA172924
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TABLE 5.4: Recall and precision with respect to truth sets 1000G and long-read
achieved by the different algorithms when provided with the candidate predic-
tions of CLEVER (Marschall et al., 2012) (CLEVER-cand) on the Illumina data
set for NA12878. We report recall for deletions of different length in a-b bases
(Rec. a-b) as well as overall recall and overall precision. The number of true
deletions in the three different size ranges are shown in brackets for the two
truth sets. The last column gives the total running time in minutes.

Rec. 20-49 Rec. 50-99 Rec. 100-50kb Recall Precision runtime
1000G (47, 156, 2989)

CLEVER-cand 5.4 35.2 65.8 63.5 8.8 N/A
IP 5.4 34.0 62.4 60.3 69.3 10.5
Dependent 5.4 34.0 62.3 60.1 69.03 3.1
Independent 5.4 34.0 62.3 60.2 69.11 7.0
Greedy 5.4 34.6 62.2 60.2 69.79 1737.5
wGreedy 5.4 34.6 62.4 60.3 69.99 4947.2

long-read (101, 522, 3443)
CLEVER-cand 23.5 44.5 79.5 73.9 9.9 N/A
IP 18.8 38.4 72.6 67.1 78.9 10.5
Dependent 20.0 38.4 73.0 67.4 79.4 3.1
Independent 20.0 38.2 73.0 67.4 79.5 7.0
Greedy 20.0 37.8 72.6 67.1 80.1 1737.5
wGreedy 20.0 37.8 72.3 66.8 79.8 4947.2

deletions D that do not match any true deletion and that are not supported by at least one

read that in turn supports at least one true deletion through one of its alternative alignments

do not count as false positive hits. Let d 2 D be one of these deletions. The rationale behind

this approach is that none of the reads that map to d would contribute to a true positive hit.

This is potentially due to true deletions in NA12878’s genome that are missing in our truth set.

Thus there is no meaningful way of comparing the performance of post-processing methods

among predictions in D. Furthermore, their inclusion would blur the results on the remaining

predictions where the existence of an alternative assignment to a true deletion indicates a true

false positive prediction.

Table 5.4 reports recall and precision of the different methods with respect to truth sets 1000G

and long-read. In terms of recall we consider the same size ranges as in the simulated Craig

Venter benchmark. The number of (validated) true deletions for NA12878 in the relevant ranges

of 20-49 and 50-99 are 47 and 156 for 1000G. For long-read, the number of (validated) true

deletions in the range 20-49 and 50-99 are 101 and 522. Since the set of deletions are quite
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TABLE 5.5: The number of clients, facilities and edges for each Chromosome (1
to M) in the NA12878 genome.

Clients Facilities Edges
1 24072 10529 95478
2 26500 12210 105243
3 20102 9488 83990
4 22129 10420 104992
5 20426 9164 96047
6 18594 8619 91562
7 21348 9488 97963
8 15602 7248 55815
9 12000 5411 49745
10 15710 6832 53240
11 16956 7667 88284
12 15790 6976 54172
13 10371 4818 35632

Clients Facilities Edges
14 10024 4515 59345
15 8183 3698 32472
16 10811 5031 72084
17 10412 4442 43527
18 10072 4608 65437
19 10395 4099 45610
20 8545 3447 47990
21 7256 3136 80558
22 4635 1905 15652
X 13021 6331 40353
Y 4097 1020 42534
M 200 37 4233

small, the precise recall values have to be considered with care. The overall trend, however,

seems to agree with the results on the simulated data set.

Again, with a rather modest loss in recall we are able to increase the precision with respect to

truth sets 1000G and long-read from 8.8% to around 69%, and from 9.9% to around 79%, re-

spectively. Similar to the results on the simulated data set, the approximate or optimal solutions

our algorithms find for the maximum facility location formulation are similar in terms of recall

and precision to the ones returned by the greedy heuristics. In contrast to the greedy approach,

however, our algorithms compute these solutions in the order of minutes rather than days.

Similar to the previous analysis, we can also look at the gap in value between our algorithms

and the optimal solution returned by the integer program (IP). Inspecting Table 5.6, we can

observe that all algorithms produce a feasible solution whose value is close to the optimum.

Interestingly, the dependent rounding algorithm doesn’t always perform better than the other

algorithms. However, both the independent and dependent rounding algorithm often perform

better in terms of value than both of the existing greedy algorithms. Once again, the sparse

interval graph and lack of conflicts between intervals leads to an instance that in general can be

easily solved.
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TABLE 5.6: The value of each algorithm, for each chromosome in the NA12878
genome. The relative gap between the value of the optimal solution (IP) and
each algorithm is given in brackets (as a percentage).

IP Independent Dependent Greedy wGreedy

1 20918 20905 (0.06) 20906 (0.06) 20838 (0.38) 20835 (0.40)

2 22789 22731 (0.25) 22743 (0.20) 22628 (0.70) 22638 (0.66)

3 17907 17840 (0.37) 17890 (0.10) 17848 (0.33) 17843 (0.36)

4 18618 18616 (0.01) 18616 (0.01) 18496 (0.65) 18512 (0.57)

5 18167 18131 (0.20) 18154 (0.07) 18081 (0.47) 18084 (0.46)

6 16132 16088 (0.27) 16112 (0.12) 16030 (0.63) 16041 (0.56)

7 17886 17798 (0.49) 17856 (0.17) 17770 (0.65) 17794 (0.51)

8 13730 13720 (0.07) 13730 (0.00) 13668 (0.45) 13683 (0.34)

9 10228 10228 (0.00) 10228 (0.00) 10177 (0.50) 10177 (0.50)

10 12737 12737 (0.00) 12737 (0.00) 12617 (0.94) 12625 (0.88)

11 14591 14419 (1.18) 14517 (0.51) 14449 (0.97) 14454 (0.94)

12 13795 13795 (0.00) 13792 (0.02) 13722 (0.53) 13726 (0.50)

13 9156 9149 (0.08) 9077 (0.86) 9126 (0.33) 9130 (0.28)

14 8902 8863 (0.43) 8869 (0.37) 8843 (0.66) 8849 (0.59)

15 7176 7172 (0.06) 7176 (0.00) 7128 (0.68) 7136 (0.56)

16 8978 8978 (0.00) 8976 (0.02) 8857 (1.35) 8877 (1.12)

17 8941 8904 (0.41) 8922 (0.21) 8881 (0.66) 8887 (0.60)

18 8629 8604 (0.29) 8629 (0.00) 8567 (0.71) 8554 (0.86)

19 8536 8536 (0.00) 8536 (0.00) 8426 (1.28) 8432 (1.22)

20 7534 7510 (0.32) 7527 (0.09) 7495 (0.52) 7500 (0.45)

21 5918 5878 (0.68) 5875 (0.73) 5825 (1.58) 5822 (1.63)

22 3967 3950 (0.43) 3960 (0.17) 3940 (0.69) 3950 (0.45)

X 11749 11738 (0.09) 11740 (0.08) 11700 (0.41) 11704 (0.38)

Y 3234 3226 (0.25) 3234 (0.00) 3197 (1.13) 3198 (1.11)

M 158 158 (0.00) 158 (0.00) 158 (0.00) 158 (0.00)



CHAPTER 6

Discussion

We close this work by providing a final discussion of the results thus far. Firstly, we will recap

the two main algorithms explored in this thesis (Section 6.1). Afterwards, we discuss the main

results of the experiments (Section 6.2). We close the chapter by providing an outline of the

current open problems and possible future work (Section 6.3).

6.1 Algorithms

The two algorithms we developed were the SELECT-AND-FILTER and DEPENDENT-ROUNDING al-

gorithms. The first algorithm we presented was the SELECT-AND-FILTER algorithm with a conflict

resolution scheme proposed by Feldman (2013). We improved on this scheme by ensuring that

we always open a superset of the facilities opened by Feldman’s scheme (see Section 4.1.1). The

algorithm led to a 0.19-approximation. This algorithm in particular is convenient to implement

since it involves solving a linear program, and then running a simple conflict resolution scheme.

The second algorithm, called DEPENDENT-ROUNDING, is based on the technique popularised by

Gandhi et al. (2006). It involves gradually shifting the fractional solution returned by (LP)

to an integral solution, while still remaining feasible.1 We adapted this technique to develop

an algorithm for the maximum facility location problem. The algorithm yielded some nice

properties. For example, the probability that a facility v 2 F is open in the final solution is

exactly y
v

– the value of the facility-variable assigned by (LP). While the algorithm results in

a non-constant approximation, it’s execution time can be much quicker than the SELECT-AND-

FILTER algorithm, as it largely depends on the number of tight points.

1This implies that the integral solution is also a feasible solution to (IP).
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6.2 Experiments

In this thesis we looked at one application of the maximum facility location problem. Given a

donor genome, we aim to map these reads from the donor genome to deletions in the reference

genome. From this problem, we can construct it’s abstract representation; where facilities are

deletions in the reference genome and clients are the reads in the donor genome. These reads

could map to multiple places in the reference genome (each having various characteristics),

leading to an ambiguous mapping. The crucial observation was that these deletions could be

represented as intervals on the real line, completing the reduction to the maximum facility

location problem.

The algorithms were tested on two data sets: the Craig Venter genome and the NA12878

genome. In both cases our algorithms performed as well as existing methods, such as the greedy

algorithms (Hormozdiari et al., 2010). More specifically, our methods were up to two orders of

magnitude faster without sacrificing solution quality (in terms of precision and recall). All of the

algorithms also produced solutions that were close to the optimal solution, which is surprising.

However further analysis showed that these instances, whilst large, were quite “easy” to solve.

This is because the interval graph was very sparse, with few conflicts in between. Even on some

of the larger instances (such a chromosome 1 and 2), the DEPENDENT-ROUNDING algorithm only

reported there being less than 100 tight points.

6.3 Open Problems and Future Work

There are three main areas for possible future work in this area. The first and foremost priority

is developing an algorithm with a better approximation guarantee. In this thesis we developed

an algorithm with a 0.19-approximation. On the other hand, we also showed that this prob-

lem cannot be approximated in polynomial time within a factor of (1 � 1/e + ") for " > 0

unless P = NP. The value of 1 � 1/e is approximately 0.64. Feldman (2013) shows that there

is a 0.25-approximation algorithm. Therefore there is a large ‘gap’ between the existing algo-

rithms and the inapproximability result. However, this doesn’t mean that an algorithm with an

approximation between 0.25 and 0.64 exists. This is because there is no way to know if our

inapproximability result is tight. This was demonstrated in Section 4.3, where we showed that

no ⇢-approximation polynomial time algorithm exists for ⇢ > 1� 1/e unless P = NP. Therefore
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the question that remains is whether there exists an algorithm with an optimal approximation

ratio of 1� 1/e or a stronger inapproximability result.

The reader may have observed that in Section 4.2 we prove that the DEPENDENT-ROUNDING

algorithms leads to a non-constant approximation, but do not state the exact approximation

ratio. This is a much harder task. Primarily, it is because the random decisions we make at each

step are not independent, and thus we cannot use any of the results from the first algorithm.

Therefore a possible area of future work is to analyse the approximation ratio of this algorithm.

In Feldman’s work, he develops a contention resolution scheme for the problem of maximising a

monotone submodular function subject to a interval graph independence constraint (Feldman,

2013). We then improved on this contention resolution scheme. However the question of

whether there is a more efficient contention resolution scheme arises. Rather than just using a

simple heuristic to select intervals, perhaps one could incorporate additional data (such as how

much a facility contributes to the final solution) in order to make more educated decisions. On

the other hand, we could argue that this data was given to us indirectly, as the first step of our

algorithm randomly selects a facility v with probability ↵y
v

. This means that if a facility has a

large y-value, the linear program is indicating that it is important this facility is kept open in

the integral solution.



CHAPTER 7

Conclusion

In this work we have presented two new algorithms for the maximum facility location problem.

Both of these algorithms receive a fractional solution from the linear program (Chapter 3) as

input and produce an integral solution. These algorithms were discussed in Chapter 4. The

first algorithm, which we called SELECT-AND-FILTER, involved randomly selecting facilities from

the fractional solution (LP) and removing conflicts. Originally, we used a contention resolution

scheme designed by Feldman (2013) to remove conflicts between the intervals. However we

then improved on Feldman’s scheme, arguing that our new scheme always selects a superset

of the facilities that Feldman’s method would have selected. This algorithm is attractive since

it has a theoretical guarantee (i.e. it will not produce a solution worse than 0.19 times the

optimal) and is easy to implement. The easy implementation is primarily due to the fact that

one has to only solve a linear program (for which there are many existing libraries) and then

implement a simple contention resolution scheme.

The second algorithm, DEPENDENT-ROUNDING, was based on an existing technique known as

pipage rounding (see Section 2.3.4) in which one gradually (and randomly) shifts a fractional

solution to an integral solution. This algorithm, while slightly less trivial to implement, in some

cases can be faster than the SELECT-AND-FILTER algorithm. Since the DEPENDENT-ROUNDING

algorithm works with the tight points of the fractional solution, this means that the running

time is partially based upon the number of tight points. For instances that have sparse interval

graphs and few conflicts, the DEPENDENT-ROUNDING rounding outperforms the SELECT-AND-

FILTER algorithm with regards to run time. This was evident in the experiments conducted, as

seen in Table 5.1 and Table 5.4 of Chapter 5. We concluded the discussion of the DEPENDENT-

ROUNDING algorithm by noting that it admitted a non-constant approximation ratio.
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We proved an inapproximability result for the maximum facility location problem in Section 4.3.

By reducing the maximum coverage problem to the maximum facility location problem, we

showed that there is in fact no polynomial time ⇢-approximation algorithm for ⇢ > 1 � 1/e

unless P = NP.

In Chapter 5, we demonstrated how the abstract problem can be represented as a biological

problem, where our goal was to map differences between a donor and reference genome. The

results demonstrated that our algorithms are fast and effective at producing solutions as good

as existing methods. We believe the model is particularly useful for this application since we

formulate conflicts between deletions as overlaps of intervals, and do not impose any other

assumptions. Thus, the work developed in this thesis can be useful both from an abstract and

biological point of view. In particular, we believe this biological formulation will be useful in a

wide range of reference-based NGS (next-generation sequencing) data analysis problems. For

example, the model we developed could be useful in identifying tumour-specific deletions from

matched tumour/normal samples based on their conflict and ambiguous mappings (Wittler and

Chauve, 2011) as well as other metagenomic issues.
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