
Towards Memory-Optimal Schedules for SDF

Mitchell Jones1, Julián Mestre2,3, and Bernhard Scholz2

1 Department of Computer Science
University of Illinois at Urbana-Champaign

2 School of Information Technologies
University of Sydney

3 Facebook

Abstract. The Synchronous Data Flow (SDF) programming model is
an established programming paradigm for stream processing applica-
tions. SDF programs are expressed by actors and streams that establish
communication among actors. Streams are implemented as FIFO buffers,
and the size of the FIFO buffers depends on the steady-state schedule.
Finding a steady-state schedule that minimizes the sizes of FIFO buffers,
is of great importance to minimize the memory consumption. The state-
of-the-art provides ad-hoc heuristics only, so finding memory-optimal
steady-state schedules is still an open challenge.
In this work, we study three objective functions capturing the memory
utilization of three different implementations of the FIFO buffers. We
show that one objective is NP-hard to optimize, while the other two
can be solved optimally in polynomial time. The algorithm for comput-
ing these optimal schedules is implementable as an online algorithm.
We show the effectiveness of our new algorithm comparing it with the
state-of-the-art heuristics. Our experiments show that for large synthetic
instances, our algorithm generates schedules that use up to 8 times less
memory.

1 Introduction

Stream programming paradigm has its origins in the Kahn’s processing model [5]
and data-flow computing [3]. Stream programs are a natural fit for applications
that process large unbounded regular sequences of data. There are many ex-
amples for established stream programming applications including digital signal
processing, audio, video, graphics, networking and for big data.

Stream programs are expressed by a set of actors and a set of data chan-
nels between actors. Conceptually, actors are independent processing units with
their own memory and program counters. An actor exchanges information with
another actor via a data channel using tokens. The channels fully expose the
dependencies between actors, and are directed: the producer is the actor at the
source of a data channel, and the consumer is the actor at the destination of the
data channel. The data channels are commonly implemented as FIFO buffers,
and the size of the FIFO buffers depend on the point in time when actors are
executed (also known as fired).

If the firing of actors is not coordinated, actors may starve or the memory of
FIFO buffers may deplete. To overcome this problem, Synchronous Data Flow
(SDF) Model was introduced [2] to bound the size of FIFO buffers and make
computations of infinite streams of data deterministic and controllable. In the
SDF model, the actor are constrained such that for each actor firing, only a fixed
number of tokens are consumed and produced, respectively. For a well-formed
SDF program, a finite periodic schedule can be constructed [2] that consists
of a finite sequence of actor firings. The schedule can be computed a priori and
invokes each actor of the stream graph at least once, and produces no net change
in the system state after executing the schedule. I.e., the number of tokens in
each data channel is the same before and after executing the schedule. Hence, a
periodic schedule can be executed again and again for unbounded regular streams
without starving actors and without exhausting memory. The state before and
after the execution of a periodic schedule is known as a steady-state. Hence, the
SDF model is a popular model for stream programming because the memory
consumption of the data channels is known a prior at compile time. There are
many different steady-state schedules for an SDF program, and the sizes of the
FIFO buffers for channels depend on the chosen steady-state schedule. Finding
a steady-state schedule that minimizes the sizes of FIFO buffers, is still an open
research problem. The current state-of-the-art algorithms for finding steady-state
schedules are ad-hoc heuristics only [2] that do not optimize for minimal memory.
Hence, stream programs may not fully utilize caches and/or modern massively
parallel architectures (e.g. GPGPUs) may need to utilize slower memory rather
than fast memory. Hence, finding memory-optimal steady-state schedules is of
importance for the SDF model.

Contributions: This work is of theoretic nature and explores the problem of
finding memory optimal steady-state schedules in an algorithmic fashion. We an-
ticipate large instances of SDF programs in near future that necessitates new al-
gorithmic contributions for memory-optimal steady-state schedules. We provide
three notions of memory optimality based on how FIFO buffers utilize memory.
We show for each notion of optimiality, algorithmic and complexity theoretic re-
sults. We also provide a synthetic set of experiments to show the effectiveness of
our new algorithmic approach in comparison with the state-of-the-art algorithm
for large instances.

2 Motivating Example

The dataflow model [3] represents a program as a stream graph G = (V,E) whose
vertices V are called actors and whose edges E ⊆ V × V are called channels. A
channel (u, v) ∈ E buffers data elements called tokens, which are passed from
the output of actor u to the input of actor v. In Fig. 1(a) a stream graph is
depicted whose actors are a, b and c. The directed edges of the example graph
represent channels that transport streams of tokens from the producing actor
to the consuming actor. In the following we denote by n and m the number of
actors and channels, respectively.

a

b c

2
−
1

2−1

1−
1

(u, v) p(u, v) c(u, v)

(a, b) 1 2
(b, c) 2 1
(a, c) 1 1

(u, v) f(u, v)

(a, b) 1
(b, c) 0
(a, c) 0

u r(u)

a 2
b 1
c 2

2 · r(a) = 1 · r(b)
1 · r(b) = 2 · r(c)
1 · r(a) = 1 · r(c)

(a) SDF Graph (b) Data Rates (c) Fill-State (d) Rep. (e) Balance Eq.

Fig. 1. Example: stream graph consists of actors a, b, and c; channels are augmented
with numbers of produced and consumed tokens for its adjacent actor when its fires.
Fill-state, repetition for steady-state, and balance equation are given.

Synchronous dataflow [7] restricts the semantics of the dataflow model by
fixing the number of consumed and produced tokens for a single firing of an
actor. The number of consumed tokens for a single firing of actor v from an in-
coming channel (u, v) ∈ E is given by function c : E → N. Function p : E → N
denotes the number of produced tokens for an outgoing channel of an actor. We
also refer to the functions p and c as data rates. The data rates of our motivating
example are shown in Fig. 1(b) and are also depicted as edge annotation in the
graph in Fig. 1(a). A schedule s = 〈u1, . . .〉 ∈ V ∗ is a sequence of actors, where a
given actor may occur several times. Each occurrence ui ∈ V in the schedule is
called an firing of actor ui. A firing of an actor modifies the state of the system
by producing and consuming tokens from the channels adjacent to the actor.
The fill-state of the system is the numbers of tokens on the channels between
actor invocations that have been queued but have not been consumed yet. We
will specify the fill-state of the system at a given point in time with a function
f : E → N. The fill-state is an abstraction of the actual tokens that are stored on
the channels. Let us assume that we have an initial fill-state as given in Fig. 1(c),
which implies that there is a single token in channel (a, b) and there are no tokens
on channel (b, c), and channel (a, c).

A periodic schedule has finite length, includes every actor of the stream graph
at least once, and its execution produces no net change in the fill-state after
executing the schedule. A periodic schedule may be computed a-priori [7], and
executed ad-infinitum without exhausting memory4. We refer to the fill-state
before and after the execution of a periodic schedule as steady-state. A periodic
schedule s has a repetition vector r : V → N that counts the occurrences of
each actor in s. The length of s is given by

∑
u∈V r(u). We denote with S the

set of periodic schedules for a given stream graph instance. Periodic schedules
are constrained by two factors. First, recall that every actor needs to be fired at
least once. For our example, actor a, b, and c must occur in schedule s. Second,
in order to conserve the fill-state of the FIFO-buffers after the execution of the
schedule, for each buffer the number of tokens put into the buffer must equal
the number of tokens consumed from the buffer. These constraints give rise to

4 Under the assumption that the memory consumption for a single actor invocation
is bounded.

Algorithm 1 greedy((V,E, p, c), t)

1. L←
∑
u∈V r(u)

2. let F be the set of fireable actors in V using fill-state t
3. let D be the set of deferrable actors in F
4. for i = 1 to L do
5. if F \D 6= ∅ then
6. u← an actor from F \D
7. else
8. u← an actor in F that increases total number of tokens the least
9. add u to the schedule s

10. r(u)← r(u)− 1
11. invoke actor u
12. update F and D // An actor u is not fireable if r(u) < 1.
13. return s

the so-called balance equations:

p(u, v) · r(u) = c(u, v) · r(v) ∀ (u, v) ∈ E (1)

r(u) > 0 ∀u ∈ V (2)

The balance equations of the example in Fig. 1 are given in the Fig. 1(e) with
the additional constraint that r(a) > 0, r(b) > 0, and r(c) > 0 where r(u)
are the repetitions for actor u, i.e., there must be r(u) occurrences of actor u
in the schedule s. Finding the smallest integral repetitions for actors can be
expressed as a problem of finding the smallest integral vector in the null-space
of the topological matrix [7]. It is known that for connected stream graphs, an
integral repetition vector satisfying Eq. (1) and Eq. (2) exists if and only if the
topological matrix of the stream graph has rank n − 1. The repetitions of the
motivating example in Fig. 1(a) is shown in Fig. 1(d).

For the example, actor a is invoked twice since it produces only one token
on the edge (a, b), but to fire b at least once it needs to consume two tokens on
(a, b). Actor c is invoked twice because a is invoked twice, and c only consumes
a single token for every token produced by a along the channel (a, c). No smaller
repetition vector can be found. To find a schedule s, a greedy heuristic was
devised by Battacharyya et al. [2] (cf. Sec. 3.3.2). The heuristic is outlined in
Algorithm 1. The goal of greedy is to minimize the sum of the maximum
number of tokens required for each channel over a periodic schedule. Given a
graph G, and the initial delay t as part of the input, it returns a schedule
s. Note that we say an actor v is fireable, if for every incoming edge (u, v),
f(u, v) ≥ c(u, v). An actor v is deferrable if it is fireable, and for at least one of
its outgoing edges (v, u) (that is not a transitive edge5) it holds that f(v, u) ≥

5 We say that a directed edge (v, u) is a transitive edge in a graph G = (V,E) if there
exists a directed path from v to u in G using only the edges E \ {(v, u)}.

c(v, u). For our motivating example in Fig. 1(a), the greedy algorithm will fail
to find the optimal periodic schedule. For the example we further assume, that
we have an initial delay of one token on edge (a, b). To minimize the memory
consumption the optimal periodic schedule to use is s = 〈a, b, c, a, c〉. During
the firing of these actors, we can keep track of the maximum number of tokens
needed for each channel. For the edge (a, b), the initial fill-state f(a, b) on the
edge is 1. We first fire actor a, and thus the fill on the edge (a, b) is increased to
2. Similarly, the edge (a, c) is now storing a single token. Next, actor b is invoked,
consuming two tokens from the channel (a, b) and producing two tokens on the
channel (b, c). Actor c fires, which consumes one token from edge (b, c) and (a, c).
At this point, the edge (a, b) has a fill of zero. In order to ensure this schedule
is periodic, we must fire a again, producing a single token on both (a, b) and
(a, c). We return back to our initial fill-state by firing c once more. Over this
execution, we can see that the maximum number of tokens on the channels (a, b)
and (b, c) is two, while the maximum number of tokens on the channel (a, c) is
one. Summing this together, this schedule requires memory to store at most five
tokens during this execution. However, it is entirely possible that the the greedy
algorithm could choose the schedule s′ = 〈a, b, a, c, c〉. By executing each actor
in s′ one-by-one, we can observe that the maximum number of tokens used by
the channels (a, b), (b, c) and (a, c) is two. Thus enough memory will be needed
to store six tokens, which is clearly suboptimal compared to the schedule s. To
see why this is the case, note that the difference between s and s′ is the order
of the 3rd and 4th actors a and c. After firing a and then b, both a and c are
fireable but not deferrable. Notice that a is not deferrable, even though there is
an outgoing edge that meets the consumption requirements (f(a, c) ≥ c(a, c)),
the edge (a, c) is a transitive edge. Since f(a, b) 6≥ c(a, b) at this point in time, a
does not meet the criteria to be marked as a deferrable actor. Thus, the greedy
algorithm can choose to fire either actor a or c. The greedy algorithm could make
the suboptimal choice to fire a again (Line 6 of Algorithm 1), instead of firing
c, which would consume the single token on the channel (a, c). By choosing to
fire a, the greedy algorithm produces a second token on the channel (a, c). This
leads to the schedule s′.

3 Problem Statement

Stream programs admit an exponential number of periodic schedules. In fact,
given a repetition vector r, any sequence of length L =

∑
u∈V r(u) where actor

u occurs r(u) times is a periodic schedule. Therefore, the number of periodic
schedules is given by |S| = L!∏

u∈V r(u)! . Among these schedules some consume less

memory on their FIFO-buffers than others. How much memory a given schedule
consumes will depend on the implementation details of the FIFO-buffers and on
the evolution of the fill-state over the execution of the schedule.

Recall that the fill-state function keeps track of the number of tokens stored
on each channel waiting to be consumed. Given the current fill-state of the sys-
tem, it is possible to determine the fill-state after the execution of the particular

actor. Therefore, given the initial fill-state, we can easily compute the fill-state
after the i-th step of the schedule execution. The fill-state function f is : E → N
defines the fill-state of channel (u, v) after the i-th execution step of schedule s
and may be defined as f0s (u, v) = t(u, v) for the first step, and

f i+1
s (u, v) =


f is(u, v) + p(u, v), if u = s(i+ 1),

f is(u, v)− c(u, v), if v = s(i+ 1),

f is(u, v), otherwise.

where t(u, v) is initial fill-state of (u, v) at the beginning of the execution of s.
A periodic schedule and an initial fill-state are said to be admissible if the

schedule can be executed without ever running out of tokens on any channel.

Definition 1. Finite periodic schedule s with initial fill-state t is admissible, if

f is(u, v) ≥ 0, ∀(u, v) ∈ E, i ∈ {0, . . . , L}
f0s (u, v) = fLs (u, v), ∀(u, v) ∈ E

It is worth noting that for each periodic schedule s ∈ S there exists an initial
fill-state that makes it admissible. Therefore, all we need is a method for deciding
which periodic schedule to use.

We study three objective functions that capture the memory utilization of
the system under different implementations of the FIFO buffers. In each case
the goal is to compute an admissible schedule (s, t), the only difference is the
objective being optimized:

(P1) min(s,t) max0≤i≤L max(u,v)∈E f is(u, v)
(P2) min(s,t)

∑
(u,v)∈E max0≤i≤L f is(u, v)

(P3) min(s,t) max0≤i≤L
∑

(u,v)∈E f
i
s(u, v)

The objective (P1) minimizes the maximum buffer requirement across all buffers.
This objective captures a simplistic implementation of FIFO buffers where space
is allocated ahead of time and buffers have uniform length. The objective (P2)
minimizes the sum of the maximum requirements. This objective captures a sim-
ple implementation of FIFO buffers where space is allocated ahead of time, but
different buffers can differ in size. The objective (P3) minimizes the maximum
combined size of all buffers at any point in time. This objective capture a more
sophisticated implementation where buffer space can be acquired and released
dynamically.

4 Scheduling to Minimize Memory Usage

In this section we consider the objectives defined in Section 3 under the as-
sumption that the initial fill-state of each buffer can be set arbitrarily. In other
words, given an instance (V,E, c, p), the goal is to compute a schedule s and an

initial fill-state t : E → N so that the schedule is admissible and one of the three
objectives (P1-P3) is minimized.

Our algorithm for Min-Max-Max and Min-Sum-Max assumes the Balance
Eq. (1) and Eq. (2) for the instance are feasible and that we are given the
smallest integral repetition vector r that the instance admits. In addition to
the instance (V,E, p, c) the algorithm take as a parameter a permutation of the
actors, we use π : V → [1, n] to the denote the position of each actor within this
permutation.

First, the algorithm computes for each channel the appropriate initial fill-
state that will ultimately make the schedule admissible. Second, each actor u is
added to a priority queue with priority 0. The algorithm then enters an infinite
loop where in each iteration we remove from the priority queue the actor u with
the smallest key x (if there are several actors with the same key, we break ties
using the permutation order), we invoke u, and re-insert u with priority x+ 1

r(u) .

The pseudo-code of the procedure is given in Algorithm 2.
Notice that for each actor u, its priority becomes 1 after r(u) invocations.

Therefore, after L =
∑
u∈V r(u) executions of the while loop every actor has

priority 1. At this point in time, the schedule executed thus far is periodic. We
call this periodic schedule, the canonical schedule induced by π and denote it by
(sπ, tπ). Notice, however, that Algorithm 2 itself never ends. Indeed, after the L-
th iteration the while loop goes on to repeat this periodic schedule ad-infinitum.

The proof of correctness hinges on the following observation on the minimum
buffer size of a channel based on the data rates of its endpoints.

Lemma 1 ([2, Theorem 3.3]). Let (u, v) be a channel. In any admissible
schedule, the buffer for channel (u, v) has size at least p(u, v)+c(u, v)−gcd(p(u, v),
c(u, v)) at some point in time during the execution of the schedule.

Proof. For sake of brevity, let us denote p(u, v) with a, c(u, v) with b, and a +
b − gcd(a, b) with lb(a, b). Let (s, t) be an admissible schedule. Since we are
interested in deriving a lower bound on the buffer size for channel (u, v), we
assume without loss of generality that this is the only channel in the graph.

If a | b then the buffer size has to be at least b = lb(a, b), so the lemma
follows. Let us then assume from now on that 1 < a < b and that b is not a
multiple of a; a symmetric argument can be used to handle the cases b | a and
1 < b < a.

Consider two executions of v in s. If we have two consecutive executions
of v, or the schedule begins and ends with v, then the buffer size is at least
2b > lb(a, b). So let us assume this does not happen. We apply the following
transformation to the schedule: If the schedule starts by executing v, then we
fuse every execution of v with the execution of u that immediately follows it
into a new actor v′; if the schedule starts by scheduling u, then we fuse every
execution of v with the execution of u that immediately precedes it into a new
actor v′. The result is a schedule for a new channel (u, v′) with production rate
a and consumption rate b − a. It is easy to check that if lb(a, b − a) is a lower
bound on the buffer size for the new channel, then lb(a, b − a) + a is a lower
bound on the buffer size for the original channel.

Algorithm 2 canonical((V,E, p, c), π)

1. for (u, v) ∈ E do

2. tπ(u, v)←

{
c(u, v)− gcd(p(u, v), c(u, v)) if π(u) < π(v)

c(u, v) if π(v) < π(u)

3. let Q be an empty priority queue
4. for u ∈ V do
5. insert u with priority 0 into Q
6. while true do
7. (u, x)← delete-min(Q) // break ties using the π order
8. execute actor u
9. insert u with priority x+ 1

r(u)
into Q

A simple proof by induction finishes the argument if a | b then we are at
the base of the inductive proof. Otherwise, the size of the buffer for the channel
(u, v) must be at least

lb(a, b− a) + a = a+ b− a− gcd(a, b− a) + a

= a+ b− gcd(a, b− a)

= a+ b− gcd(a, b),

where the last equality follows by Euclid’s algorithm.

Now that we have a lower bound on the size of each buffer, we will prove that
these bounds are attained simultaneously by our algorithm.

Lemma 2. For any permutation π, the schedule (sπ, tπ) is admissible and for
each channel (u, v) the maximum size of the buffer during the execution of the
schedule is p(u, v) + c(u, v)− gcd(p(u, v), c(u, v)).

Proof. We prove the bounds on the size of the buffer for a fixed, but arbitrary,
channel (u, v). For sake of brevity, let us denote p(u, v) with a and c(u, v) with

b. Recall that Balance Eq. (1) for channel (u, v) implies r(u)
r(v) = b

a .

First, consider the case π(u) < π(v). Notice that the 1st execution of v is
preceded by an execution of u. In general, the k+ 1st execution of v is preceded
by ⌊

k 1
r(v)

1
r(u)

⌋
+ 1 =

⌊
k
r(u)

r(v)

⌋
=

⌊
kb

a

⌋
+ 1

executions of u. Therefore, the fill-state of the channel after the k+1st execution
of v is precisely

tπ(u, v) + a

(⌊
kb

a

⌋
+ 1

)
− (k + 1)b.

Using the fact that tπ(u, v) = b− gcd(a, b) when π(u) < π(v), we can show that
the fill-state of the channel is always non-negative:

tπ(u, v) + a

(⌊
kb

a

⌋
+ 1

)
−(k+1)b = a

(⌊
kb

a

⌋
+ 1

)
−kb−gcd(a, b) ≥ gcd(a, b)−gcd(a, b) = 0,

where the inequality follows from the fact that a
(⌊
kb
a

⌋
+ 1
)
−kb > 0 and Bézout’s

Lemma [9].
On the other hand, just before before the k+ 1st execution of v, the fill-state

of the buffer is

tπ(u, v) + a

(⌊
kb

a

⌋
+ 1

)
− kb.

Again, using the fact that tπ(u, v) = b− gcd(a, b) we get

tπ(u, v) + a

(⌊
kb

a

⌋
+ 1

)
−kb = a+b−gcd(a, b)+a

⌊
kb

a

⌋
−kb ≤ a+b−gcd(a, b),

so the buffer size never exceeds a+ b− gcd(a, b).
Now consider the case π(v) < π(u). In this case the i+ 1st execution of v is

preceded by
⌈
ib
a

⌉
executions of u. A similar argument (but using the fact that

tπ(u, v) = b when π(u) > π(v)) shows that the schedule is admissible and that
the maximum buffer size is a+ b− gcd(a, b).

Combining the lower bound from Lemma 1 and the upperbound from Lemma 2
we get that every canonical schedule is an optimal solution for (P1) and (P2).
The following theorem summarizes the results in this section.

Theorem 1. There is a polynomial time algorithm for computing an optimal
periodic schedule for the objectives (P1) and (P2) with flexible initialization.
Furthermore, the schedule can be computed online using Θ(n) space and O(log n)
time per actor invocation.

Proof. The optimality of the objectives (P1) and (P2) follows immediately
from Lemmas 1 and 2. The complexity claims follow from using a priority queue
implementation that uses Θ(n) space and performs insert and delete-min

operations in O(log n) time.

We contrast our positive results from the previous section by showing that
it is NP-hard to optimize the Min-Max-Sum (cf. (P3)).

Theorem 2. It is NP-hard to optimize (P3) with flexible initialization.

The proof of this Theorem is given in Appendix A.

5 Experiments

With the advent of stream programming we anticipate large instances of stream
programs. In the absence of large stream programs, we have generated complete,

Instance canonical greedy

|V | (P1) (P2) time (s) (P2) time (s)

10 20 586 0.0030 1226 0.0097
15 28 1048 0.0047 2937 0.0362
20 32 2483 0.0081 7818 0.1124
25 48 6131 0.0143 30306 0.5421
30 60 9486 0.0188 47979 1.6658
35 70 16782 0.0291 68126 5.0272
40 80 22927 0.0352 149469 8.3609
45 84 29781 0.0454 244380 17.6809
50 100 46203 0.0567 347676 39.5296

Table 1. Performance comparison on randomly generated instances.

directed, acyclic graphs as a synthetic benchmark suite. We generated the graphs
as follows: We start with a directed graph G = (V,E) of n nodes, and number
the vertices v1, v2, . . . vn. For each vertex vi ∈ V , we select a random repetition
value r(vi) uniformly at random from the range {1, . . . , n}. We then iterate
through every pair of vertices vi, vj ∈ V . If i 6= j and i < j, we add the directed

edge (vi, vj) to E, with p(vi, vj) =
r(vj)

gcd(r(vi),r(vj))
and c(vi, vj) = r(vi)

gcd(r(vi),r(vj))
.

This generation template guarantees that a repetition vector exists, and the
topological matrix of this directed, acyclic graph has rank n− 1.

23 24 25 26

n

2−9

2−7

2−5

2−3

2−1

21

23

25

27

R
un

ti
m

e
(s

ec
on

ds
)

GREEDY

CANONICAL

10 20 30 40 50

n

0

1

2

3

4

5

6

7

8

9

(P
2)

G
R

E
E

D
Y

/(
P

2)
C

A
N

O
N

IC
A

L

Fig. 2. Visualizing the performance on randomly generated instances.

Using this approach, we generated graphs of size n = 10, 15, . . . , 50 and ran
both algorithms. As before, we timed the execution of each algorithm, taking the
average over twenty runs. The numerical results of these experiments are shown
in Table 1 and are visualized in Fig. 2.

Two observations stand out from Fig. 2. First, canonical seems to be
asymptotically faster greedy. We suspect that that this is due to the fact that
as the graph becomes denser, there will be many “fireable” actors in each it-
eration, leading greedy to spend nearly quadratic time per iteration, whereas
canonical, is guaranteed to spend at most logarithmic time. Second, greedy
was never able to find an optimal schedule and the quality of the solutions it
produced deteriorated as n grew.

These experiments strongly support the hypothesis that greedy is slower
and produces worse schedules with respect to memory consumption when more
actors become “fireable” at each iteration.

6 Related Work

Our work is closely connected to the greedy algorithm proposed in [2]. Their
approach is based on a heuristic which keeps track of the set of “fireable” actors.
Our algorithm is based on optimality theorems which produces both the the
optimal memory schedule and the required initial delay to achieve optimality.
With a given initial delay, the NP-hard proof of the problem is given in [2]. The
approach in [4] uses a model-checking method to find optimal schedules which
requires a machinery which is outside of the complexity class P. There is a
stream of literature on scheduling of SDF programs with model checking. Other
approaches use time automata to solve the scheduling problem for SDF [1], and
variations of the problem definition taking other metrics such as throughput into
account [8].

7 Conclusion

In this work, we have studied three mathematical definitions of memory opti-
mality based on how FIFO buffers utilize memory. We started by showing that
two of these objectives can be solved in logarithmic worst-case time per actor
invoked, and that the last objective is NP-hard. Experiments showed that our
new algorithm drastically outperformed existing heuristics in both speed and
the memory usage of schedules produced on dense instances.

References

1. W. Ahmad, R. d. Groote, P. K. F. Hölzenspies, M. Stoelinga, and J. v. d. Pol.
Resource-constrained optimal scheduling of synchronous dataflow graphs via timed
automata. In Proceedings of the 2014 14th International Conference on Application
of Concurrency to System Design, ACSD ’14, pages 72–81, Washington, DC, USA,
2014. IEEE Computer Society.

2. S. S. Battacharya, P. K. Murthy, and E. A. Lee. Software Synthesis from Dataflow
Graphs. Kluwer Academic Publishers, 1996.

3. J. B. Dennis. First version of a data flow procedure language. In B. Robinet, editor,
Symposium on Programming, volume 19 of Lecture Notes in Computer Science,
pages 362–376. Springer, 1974.

4. M. Geilen, T. Basten, and S. Stuijk. Minimising buffer requirements of synchronous
dataflow graphs with model checking. In Proceedings of the 42Nd Annual Design
Automation Conference, DAC ’05, pages 819–824, New York, NY, USA, 2005. ACM.

5. G. Kahn. The semantics of simple language for parallel programming. In IFIP
Congress, pages 471–475, 1974.

6. R. M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103. Plenum Press, 1972.

7. E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, Sept. 1987.

8. M. H. Wiggers, M. J. G. Bekooij, and G. J. M. Smit. Buffer capacity computation
for throughput-constrained modal task graphs. ACM Trans. Embed. Comput. Syst.,
10(2):17:1–17:59, Jan. 2011.

9. Wikipedia. Bézout’s identity, 2016. [Online; accessed 12-August-2016].

A Proof of Theorem 2

Proof. We reduce the minimum feedback arc set (MFAS) problem to our prob-
lem. Given a directed graph H, the MFAS problem asks for a minimum car-
dinality subset of edges whose removal makes H acyclic. An equivalent formu-
lation of the problem is to find an ordering v1, . . . , vn of V [H] that minimizes
the number of backward edges, namely, those edges (vi, vj) ∈ E[H] such that
i > j. MFAS is one of the original NP-hard problems from Karp’s seminal pa-
per [6]. We construct an instance (G, p, c) of our scheduling problem from H.
The stream graph is constructed by adding a dummy node d to H and adding
an edge (d, v) for each v ∈ V [H]. The data rates of edges in E[H] are uni-
form and small, p(u, v) = c(u, v) = 1 for all (u, v) ∈ E[H], while the rates
of edges incident on d are uniform and large, p(d, u) = c(d, u) = |E[H]| for
u ∈ V [H]. Because the data rates of each buffer are the same, it follows that
the repetition vector of the instance is r(u) = 1 for all u ∈ V [G]. Thus, a
schedule is simply a permutation of the vertices in V [G]. Since the value of
the objective function is invariant under taking a cyclic shift of this permuta-
tion, we can assume without loss of generality that the schedule starts with
the dummy vertex d. Consider a schedule d, v1, . . . , vn. We define the backward
edges of H induced by this permutation to be EB = {(vi, vj) ∈ E[H] : i > j}
and the forward edges, to be EF = {(vi, vj) ∈ E[H] : i < j}. Let memory(t)
be the total memory requirement after executing t steps of the schedule. At
the very beginning of the schedule the buffers of edges incident on d or in
EF are empty, while the buffers of edges in EB have one token. Therefore,
memory(0) = |EB |. Consider after executing t ∈ {1, . . . , n} steps of the sched-
ule: Every buffer (d, v1), . . . , (d, vt−1) is empty, while buffers (d, vt), . . . , (d, vn)
have |E| tokens each. A buffer (vi, vj) ∈ EB is empty if j < t ≤ i, and
otherwise holds one token. Similarly, a buffer (vi, vj) ∈ EF holds one token
if i < t ≤ j, and otherwise is empty. Therefore, memory(t) = |E|(n + 1 −
t) + |EF ({v1, . . . , vt−1} , {vt, . . . , vn})|+ |EB \ EB({vt, . . . , vn} , {v1, . . . , vt−1})| ,
where the three terms of the right-hand side correspond to the contribution of
buffers incident on d, in EF , and in EB , respectively. It follows that the max-
imum memory requirement is attained at t = 1, where it equals |E|n + |EB |.
Therefore, minimizing this quantity is equivalent to finding a permutation of the
vertices of H minimizing the number of backward edges, which is correspond
to the MFAS objective. Hence, finding a periodic schedule minimizing (P3) is
NP-hard.

	Towards Memory-Optimal Schedules for SDF

