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Abstract. The first step in the analysis of data produced by ultra-high-throughput next-generation

sequencing technology is to map short sequence ‘reads’ to a reference genome, if available. Sequenc-

ing errors, repeat regions, and polymorphisms may lead a read to align to multiple locations in the

genome reasonably well. While ignoring such multi-mapping reads or some of their alignments will

reduce the sensitivity of almost any type of downstream analysis (e.g. detecting structural variants),

erroneous mappings will typically yield false positive predictions. Here we propose a framework that

aims to identify true predictions among a large set of candidate predictions by selecting for each read

a unique mapping that collectively imply conflict-free predictions. We formulate this problem as the

maximum facility location problem, for which we propose LP-rounding heuristics. We provide a theo-

retic guarantee on the quality of the solution and demonstrate the utility of our algorithm in resolving

conflicting deletions implied by simulated reads mapping ambiguously to Craig Venter’s genome model

and Illumina sequencing reads of the well-studied NA12878 individual.

1 Introduction

Ultra-high-throughput next-generation sequencing (NGS) instruments generate a huge num-

ber of short DNA sequences, so-called ‘reads’, that can be mapped back to their origin in a

reference genome to facilitate the reconstruction of the desired biological measurement from

the individual puzzle pieces. The correct mapping of a read to its true origin, however, is

hampered by sequencing errors and genuine differences between reference and donor genome

which enlarge the search space by inexact read matches and thus might lead, similar to
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repetitive regions, to ambiguous mappings. Furthermore, assay-specific read characteristics

like bisulfite-converted DNA (BS-seq) or introns spanned by RNA-seq reads might further

complicate the search for the true origin of a read.

Simply ignoring ambiguously mapping reads in the reconstruction of, e.g., genomic poly-

morphisms, alternative splicing, or DNA methylation, has a negative impact on the sensi-

tivity of the prediction, especially in repeat regions of the genome. In Hach et al. (2010), for

example, 100 bp reads mapped on average to 140 locations with at most 6 mismatches in

the human reference genome. Not surprisingly, neglecting all but one arbitrary mapping in

the downstream analysis will yield both false positive and false negative predictions.

A common approach to unify the (ambiguous) mappings of different reads is to derive

an overall set of candidate predictions from all maximal groups of read mappings that sup-

port the same phenomenon. To improve sensitivity within repetitive regions of the genome,

current methods for structural variant detection form clusters (or cliques) based on all good

read alignments Medvedev et al. (2009), not just one best alignment. Since segmental du-

plications define hotspots for large-scale variations Cooper et al. (2007); Kim et al. (2008),

these regions are of particular interest Medvedev et al. (2009). The main challenge this soft

clustering strategy has to cope with is that of maintaining a high precision. The candidate

set it generates naturally contains a significant number of false positive predictions, since

ambiguous mappings of a single read may participate in several predictions although at most

one of them denotes the true origin.

In this work, we propose a model and algorithms to separate true predictions from can-

didate predictions that result from mapping artefacts. To be applicable to a wide range of

interpretation problems of NGS read mappings, we solely employ the conflict of different pre-

dictions to resolve ambiguous mappings. We refrain from imposing additional assumptions

like parsimony. We formulate the unique assignment of multi-mapping reads to conflict-

free predictions as a global optimization problem that takes into account the entirety of

all (ambiguous) read mappings. The algorithm we propose resolves conflicts among predic-



tions efficiently based on the assumption that predictions can be represented by genomic

intervals with respect to the reference and that two predictions are in conflict if and only if

the corresponding intervals overlap. For example, introns inferred from spliced alignments of

RNA-seq reads, deletions in a donor genome with respect to a reference genome (see overlap-

ping green and red deletion in Figure 1), and other types of genetic variations like inversions

naturally correspond to non-overlapping genomic intervals. This does not only apply to hap-

loid genomes, but also in diploid genomes, for example, overlapping (but different) deletions

or introns represent rare events.

1.1 Preliminaries

We formulate the problem of resolving conflicting predictions from multi-mapping reads as

the maximum facility location problem, which we formally introduce in the next section. A set

of clients has to be assigned (uniquely) to a set of non-conflicting facilities such that the total

weight of the assignment is maximized. In this proof of concept, we illustrate the utility of our

conflict resolution model in the prediction of deletions from paired-end reads (see Figure 1).

Besides other types of mutations, larger deletions have been shown to be associated with

diseases such as cancer Pleasance et al. (2009). A popular approach to discover large-scale

genetic variations including deletions is from paired-end reads sequenced from both ends of

a donor’s DNA fragments. A mapping of the two reads to the reference genome at a distance

that is larger than what is to be expected from an empirically estimated fragment length

distribution indicates a potential deletion in the donor genome. The confidence in a particular

mapping of a read is expressed by an alignment score that captures, e.g., mismatches, the

probability of sequencing errors at each nucleotide base calls, and the likelihood of the implied

fragment length.

In this particular instantiation of our framework, facilities correspond to candidate dele-

tions and clients correspond to reads. A client (read) can be assigned to the facilities (dele-

tions) that are supported by one of its mappings. The assignment of a client to a facility
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Fig. 1: Alignments supporting conflicting deletions. An orange and a blue read connected by
a grey line represent a paired-end read. The two reads map to the reference genome at a
distance larger than the distance between the sequenced ends (reads) of the donor fragments,
indicating a potential deletion. Alternative (wrong) alignments (red dotted lines) support a
(wrong) deletion (red) that overlaps the green deletion to the left and thus the two deletions
cannot occur simultaneously on the same allele.

contributes the corresponding read alignment score to the overall weight. Starting from an

initial set of candidate deletions provided by a state-of-the-art computational method for

the discovery of structural variants, the optimal solution in our model seeks a set of non-

overlapping deletions (i.e. non-conflicting facilities) that reduce the number of false-positive

predictions while retaining most of the true positive deletions.

1.2 Related work

Conflicts between structural variants (SV) were first studied in Hormozdiari et al. (2009).

While overlapping SVs were heuristically filtered in a post-processing step in Hormozdiari

et al. (2009), the conflict resolution was integrated with their maximum parsimony model

in a follow-up work Hormozdiari et al. (2010). The authors show that the resulting com-

binatorial optimization problem is NP-hard and inapproximable and propose a heuristic

greedy algorithm. A similar approach was used later in the joint analysis of multiple sam-

ples Hormozdiari et al. (2011). Lee et al. (2008) and Wittler and Chauve (2011) study two

components of the problem considered in this work individually. Lee et al. (2008) tries to

resolve multiple mappings of a read probabilistically, ignoring potential conflicts among pre-

dicted SVs. At the other end, Wittler and Chauve (2011) refines the definition of conflicts



between tumor-specific deletions and proposes a heuristic approach for their resolution, ig-

noring multi-mapping reads completely. The authors identify in Wittler and Chauve (2011)

erroneous mappings from, e.g., repeated genomic regions, as a potential source of false posi-

tive predictions and recognize the need for efficient algorithms that resolve the combinatorics

of mappings and conflicting predictions.

As we will see, the maximum facility location problem is a special case of the problem

of maximizing a monotone submodular function subject to a interval graph independence

constraint. For this problem Feldman Feldman (2013) gave a 0.25-approximation based on

rounding a fractional solution of the a so-called multilinear relaxation. Unfortunately, the

current best algorithms for finding good solutions to the multilinear relaxation are imprac-

tical due to their high-degree-polynomial running time, even more so when the analysis

involves hundreds of millions of reads (clients).

1.3 Our results

Our main technical contribution are two LP-rounding heuristics for the maximum facility

location problem, and a theoretical analysis for the first that is a 0.19-approximation.

We confirm the practicability of our algorithms in experiments on both simulated reads

from Craig Venter’s genome and publicly available Illumina sequencing data from the well-

studied NA12878 individual. Recall and precision achieved by our heuristics when resolving

conflicting deletions demonstrate the biological significance of our framework.

The goal of this work is to show the feasibility of maintaining a high precision of ‘soft

clustering’ approaches that use ambiguous read mappings to call structural variants or other

genomic interval features. We do not necessarily intend to provide a comprehensive method

for the detection of structural variants.



2 Maximum facility location

In this section we formally define our abstract optimization problem, which we call the

maximum facility location problem, and later give a linear relaxation that will be the basis

of our algorithms.

Let C be a set of clients and F be a set of facilities. Let w : C × F → R be the weight

of assigning a given client to a given facility. Associated with every facility v ∈ F there is

an interval Iv on the real line. We say that a subset of facilities S ⊆ F is independent if no

two intervals in { Iv : v ∈ S } overlap, see Figure 2 for an example. We use P to denote the

set of endpoints of all intervals.

F

C

wu,v

Fig. 2: Clients C and facilities F represent paired-end reads and candidate deletions, re-
spectively. Each facility is associated with an interval whose endpoints correspond to the
breakpoints of the candidate deletion. Edges between clients and facilities indicate align-
ments supporting the corresponding deletion. Our confidence in the alignment is captured
by a score w. A feasible solution (bold edges) to the maximum facility location problem
assigns reads to an independent set of facilites.

Finally, for any non-empty subset S ⊆ F we define the value of S as

f(S) =
∑
u∈C

max
v∈S

wuv. (1)

For completeness, we define f(∅) = 0.



An instance of the maximum facility location problem is specified by a tuple (C,F,w, I).

The objective is to choose an independent subset S ⊆ F maximizing f(S). We now prove

an important property about this objective function.

Definition 1. A function f is submodular if ∀A ⊆ B ⊆ F and ∀v ∈ F \B

f(A+ v)− f(A) ≥ f(B + v)− f(B).

Lemma 1. The function f defined in (1) is monotone non-decreasing and submodular.

Proof. Let A ⊆ B ⊆ F . Notice that maxv′∈Awuv′ ≤ maxv′∈B wuv′ for all u ∈ C. Summing

over all u ∈ C we get f(A) ≤ f(B). Therefore, f is monotone non-decreasing.

To prove the submodularity of f , consider a facility v ∈ F \B. We add v to both A and

B and analyze gain in value due to some arbitrary client u ∈ C:

max
v′∈A+v

wuv′ −max
v′∈A

wuv′ = max(0, wuv −max
v′∈A

wuv′),

≥ max(0, wuv −max
v′∈B

wuv′) = max
v′∈B+v

wuv′ −max
v′∈B

wuv′ .

Summing over all u ∈ C we get f(A + v) − f(A) ≥ f(B + v) − f(B). Therefore, f is

submodular. ut

2.1 Linear programming relaxation

Our linear programming relaxation (LP) uses two type of variables. For each facility v ∈ F ,

we have a facility variable yv that indicates whether facility v is open. For each client u ∈ C

and facility v ∈ F , we have a client-facility variable xuv that captures whether u is assigned

to v.

The linear program has three types of constraints. For each client u ∈ C we have a

constraint enforcing that u is assigned to at most one facility. For each client u ∈ C and

facility v ∈ F we have a constraint enforcing that if u is assigned to v then v is open. Finally,



for each interval endpoint p ∈ P we have a constraint enforcing that we choose at most one

of the facilities whose intervals span p.

maximize
∑

u∈C,v∈F

wuvxuv

subject to
∑
v∈F

xuv ≤ 1 ∀u ∈ C

xuv ≤ yv ∀u ∈ C, v ∈ F∑
v∈F :p∈Iv

yv ≤ 1 ∀p ∈ P

xuv ≥ 0 ∀u ∈ C, v ∈ F

yv ≥ 0 ∀v ∈ F

(LP)

3 Algorithms

In this section we describe two algorithms for maximum facility location. Both algorithms

solve the linear relaxation (LP) to get an optimal fractional solution and round it to a feasible

integral solution using different approaches. The first algorithm uses independent rounding

with alteration, while the second algorithm uses dependent rounding.

3.1 Independent rounding with alteration

Our first algorithm is very simple. First, we compute an optimal fractional solution (x, y) of

the linear relaxation (LP). Then we create a set R ⊆ F by placing each facility v ∈ F into R

with probability α yv, where α ∈ [0, 1] is a parameter that will be chosen later to maximize

the approximation ratio in our analysis. Finally, we apply a filtering step that drops some

facilities so as to obtain an independent set T ⊆ R.

It should be noted that the alteration step (where we go from R to T ) is the same as

the conflict resolution scheme of Feldman Feldman (2013) that was developed for the more

general problem of maximizing a submodular function subject to the constraint that the

set chosen is independent in an auxiliary interval graph. As mentioned in the introduction,



Algorithm 1 Independent rounding with alterations.

function select-and-filter(α)
(x, y)← solve (LP)
R← Select each v ∈ F with probability α yv
T ← { v ∈ R : @ v′ ∈ R such that start point of Iv lies in Iv′ }
return T

while this algorithm is a 0.25-approximation, it is not practical as it requires that we solve

the stronger multilinear relaxation rather than the much easier linear relaxation (LP).

The main result of this subsection is that this simple algorithm leads to a constant factor

approximation.

Theorem 1. There is an LP-rounding 0.19-approximation for maximum facility location.

The proof of this Theorem relies on a few auxiliary lemmas. First, we argue that solution

T output is feasible. Then we argue that the expected value of the set R is at least a constant

factor of the value of the fractional solution (x, y). Finally, we show that the expected value

of T is at least a constant factor of the expected value of R.

Lemma 2. The set T returned by select-and-filter is independent.

Proof. Suppose, for the sake of contradiction, that T is not feasible. This means there are in

T two facilities v and v′ whose intervals intersect. Without loss of generality assume that the

start point of Iv is to the right of the start point of Iv′ . Since v′ ∈ T , it follows that v′ ∈ R.

But then v should not belong in T since the start point of Iv lies in Iv′ , a contradiction. ut

Lemma 3. Let R be the set sampled by select-and-filter, then

E[f(R)] ≥ (1− e−α) ·
∑

u∈C,v∈F

wuv xuv.

Due to the technicality of the proof to Lemma 3, details are provided in Appendix A.

Lemma 4. Let R and T be the sets computed in select-and-filter then

E[f(T )] ≥ (1− α) E[f(R)].



Proof. Let v ∈ F and p be the start point of Iv. Let us start by estimating the probability

that v /∈ T given that v ∈ R. Recall that v is removed from R only if there exists v′ ∈ R

such that p ∈ Iv′ . Therefore,

Pr[v 6∈ T | v ∈ R] = Pr

 ∨
v′∈F−v:
p∈Iv′

v′ ∈ R

 ≤ ∑
v′∈F−v:
p∈Iv′

Pr[v′ ∈ R] =
∑

v′∈F−v:
p∈Iv′

αyv′ ≤ α,

where the first inequality follows from union bound, and the second from the feasibility of

(x, y). Therefore,

Pr[v ∈ T | v ∈ R] ≥ 1− α. (2)

Vondrák et al. (Vondrák et al., 2011, Theorem 1.3) showed4 that (2) implies that

E[f(T )] ≥ (1− α) E[f(R)],

when f is monotone submodular. From Lemma 1 we know that f is indeed monotone sub-

modular. ut

Proof. (of Theorem 1) Let R and T be the sets chosen by select-and-filter. By Lemma 2

the set T is independent. Its expected value is

E[f(T )] ≥ (1− α) E[f(R)] ≥ (1− α)(1− e−α)
∑

u∈C,v∈F

wuvxuv,

where the first inequality follows from Lemma 4 and the second inequality from Lemma 3.

The best approximation ratio is attained at α = 0.44, where we get 0.199. ut

4 Although the proof cited uses a different set R no assumption is used in the proof other than R is a random
variable.



Algorithm engineering. We briefly discuss two ideas for improving the observed performance

of select-and-filter without sacrificing its theoretical guarantees: Picking the optimal α

and resolve conflicts less aggressively.

First, notice that our choice of α in the proof of Theorem 1 may not be the best for a

particular instance. Instead of picking a single value of α we pick the “best” α as follows.

For each v ∈ F , we generate a random number rv ∈ [0, 1). In select-and-filter, we can

think of a facility v begin added to the set R if rv ≤ αyv. Therefore there are discrete values

of α for which we add a new facility v to our set R. Let Rα = { v ∈ F : rv ≤ αyv } and

α1 < α2 < · · · < αn be the interesting values of α when Rα changes; that is, αj = rv/yv for

some v ∈ F . Observe that Rα1 ⊂ Rα2 ⊂ · · · ⊂ Rαn . Then we can simply compute Tαi
for

each value of αi and return the set maximizing f(Tαi
).

Second, recall that the algorithm resolves conflicts of R by keeping only those facilities

whose start point is not contained in another interval in R. Consider a maximal subset A ⊆ R

such that the union of their intervals forms a single interval. For each such A, the filtering

step of select-and-filter would only place the facility in A with the leftmost start point

into T . Instead, we can be less aggressive and pick a maximal independent subset of A that

includes the leftmost interval. Thus, we are guaranteed to pick an independent set that is a

superset of the set chosen by the simple version.

3.2 Dependent rounding

Our second algorithm uses a more refined rounding routine. Instead of sampling and removing

intervals that have conflicts, we gradually shift the fractional solution to an integral using

dependent rounding Gandhi et al. (2006) routine.

Before we can describe the algorithm we need a few definitions. Given a solution (x, y)

to (LP), let S = { v ∈ F : 0 < yv < 1 } be the set of facilities with a non-integral value. For



a point p ∈ P , let slack(p) denote the slack of its corresponding constraint in (LP):

slack(p) = 1−
∑

v∈F :p∈Iv

yv.

We say p is tight if its constraint is tight; namely, if slack(p) = 0.

Algorithm 2 Dependent rounding.

function dependent-rounding
(x, y)← solve (LP)
while ∃ non-integral facility do

S ← non-integral facilities in y
M1,M2 ← select-subsets(S, y)
For each i = 1, 2 set Pi ← points that intersect an interval in Mi

ε← min
(
minp∈P1\P2 slack(p),minv∈M2 yv

)
δ ← min

(
minp∈P2\P1 slack(p),minv∈M1 yv

)
For each v ∈ F set y′v =


yv − δ, v ∈M1,

yv + δ, v ∈M2,

yv, otherwise.

For each v ∈ F set y′′v =


yv + ε, v ∈M1,

yv − ε, v ∈M2,

yv, otherwise.

y =

{
y′ with probability ε

ε+δ

y′′ with probability δ
ε+δ

return { v ∈ F : yv = 1 }

Our algorithm starts by finding an optimal fractional solution (x, y) to the linear relax-

ation (LP). Then we iteratively modify this solution as follows. First, we select two disjoint

independent subsets M1,M2 ⊂ S. Then, we randomly update the y-values of facilities in

M1∪M2 so that at least one more facility is integral or at least one more point is tight. This

is repeated until there are no more fractionally opened facilities.



Let us describe in more detail how the update is carried out. For i = 1, 2, let Pi ⊆ P be

those points that intersect an interval in Mi. We compute the following two quantities

ε = min

(
min

p∈P1\P2

slack(p), min
v∈M2

yv

)
,

δ = min

(
min

p∈P2\P1

slack(p), min
v∈M1

yv

)
.

Finally, with probability ε
ε+δ

we replace the current fractional solution y with a new solution

y′v =


yv − δ, v ∈M1,

yv + δ, v ∈M2,

yv, otherwise.

Otherwise, with complementary probability δ
ε+δ

, we replace y with the new solution

y′′v =


yv + ε, v ∈M1,

yv − ε, v ∈M2,

yv, otherwise.

The pseudocode of the main routine is given in Algorithm 2 while the pseudocode for picking

M1 and M2 appears in Algorithm 3.

The following Theorem is the main result of this section.

Theorem 2. Let T be the set returned by dependent-rounding. Then T is independent

and Pr[v ∈ T ] = yv for all v ∈ F .

We break the analysis into a series of lemmas. First, we prove some properties of the

output of select-subsets. Then, we prove that the expected value of the fractional solution

at the end of an iteration equals its value at the beginning of the iteration. Finally, we show

that in each iteration we either gain an additional integral facility or a new tight point.



Algorithm 3 Creating subsets M1 and M2.

function select-subsets(S, y)

P̃ ← the set of tight points in S sorted from left to right
v1 ← a facility in S whose interval the has leftmost start point
v2 ← a facility in S − v1 whose interval starts at the first tight point in P̃
M1 ← { v1 }
M2 ← { v2 }
for every tight point t in P̃ (in sorted order) do

if Iv1 contains t and Iv2 contains t then
continue

v ← the facility in S starting at t
if Iv2 contains t then

Add v to M1

v1 ← v
else if Iv1 contains t then

Add v to M2

v2 ← v
else

break
return M1,M2

Lemma 5. Let M1 and M2 be the sets computed by select-subsets. Then M1 and M2

are disjoint and both are independent. Furthermore, if p ∈ P is a tight point then either p

stabs both M1 and M2, or none of them.

Proof. Observe that every tight point must occur at an interval start point. Let v1 be the

facility whose interval Iv is the first in S (from left to right). If the first tight point is to the

right of the start point of Iv1 then Iv2 is well-defined. Otherwise, if the start point of Iv1 is

tight there must be another facility starting at that point (since S is the set of non-integral

facilities) so Iv2 is well-defined in this case too.

Iv2

Iv1 Iv

t

Fig. 3: The case when only one of the intervals stabs the next tight point.



Now that we have shown the invariant holds after initialization, we aim to prove that M1

and M2 are independent. To do this, we need to show that the loop invariant also holds at

the end of each iteration. Consider the next tight point t and facility v starting at t. Suppose

t stabs Iv2 only but it does not stab Iv1 . Since we scan from left to right, Iv1 is to the left of t

and Iv starts at t, as shown in Figure 3. Therefore we can add v to M1 correctly and update

v1 = v. The case when t stabs Iv1 but not Iv2 is handled in a similar fashion, but adding v to

M2 and updating v2 = v. Finally, if t stabs both Iv1 and Iv2 , we continue to the next tight

point; otherwise, if t stabs neither Iv1 or Iv2 , the algorithm stops. Clearly there are a finite

number of tight points, therefore the loop will eventually terminate. Therefore the invariant

holds throughout.

Now consider a tight point p ∈ P . If p was never considered by the for loop then p is

strictly to the right or to the left of every interval in M1 ∪ M2, and thus does not stab

any of them. Otherwise, in the iteration when p was considered by the algorithm it either

intersected both Iv1 and Iv2 , in which case we are done, or it added v so that the property

holds. ut

Lemma 6. Consider an iteration of dependent-rounding. Let y be the fractional solu-

tion at the beginning, and ŷ be the solution at the end of the iteration. Then for every v ∈ F

we have E[ŷv] = yv. Furthermore, ŷ obeys the independence and non-negativity constraints

of (LP).

Proof. If we have a facility v ∈ F that is not in M1 or M2, then it is clear that the equality

holds as its value does not change. For each facility v ∈M1 we have

E[ŷv] =

(
ε

ε+ δ

)
(yv − δ) +

(
δ

ε+ δ

)
(yv + ε)

=
εyv − εδ + δyv + εδ

ε+ δ

= yv.

A similar argument applies for facilities v ∈M2.



Notice that ŷv ≥ 0 by our definition of ε and δ since each of these values is less than or

equal to the minimum y-value of the subset of variables that are decreased in each case.

Finally, let us now argue that y obeys the independence constraints of (LP). Let p ∈ P

be an arbitrary point. If p ∈ P1∩P2 then its constraint is obeyed since the increase/decrease

of a facility in M1 that it stabs is compensated with a corresponding decrease/increase of

a facility in M2 that it stabs. If p ∈ P1 \ P2 then by the definition of ε the independence

constraint at p is obeyed. Similarly, if p ∈ P2\P1 then by the definition of δ the independence

constraint at p is obeyed. Finally, p /∈ P1 ∪ P2 then the slack of p does not change so the

independence constraint at p is obeyed as well. ut

Lemma 7. In each iteration of dependent-rounding we either gain a new integral fa-

cility or a new tight point.

Proof. Let us argue that ε > 0 and δ > 0. Note that minv∈M2 yv > 0 since all facilities in M2

are non-integral, and that minp∈P1\P2 slack(p) > 0 since all tight points that stab M1 also

stab M2. Putting these two facts together, we get ε > 0. A similar line of reasoning yields

δ > 0. Therefore, no matter what type of update we perform, we always move to a different

fractional solution.

Suppose that the algorithm replaces y with y′. Furthermore, assume that ε = yv for some

v ∈ M2. It follows that y′v = 0, so we gain a new integral facility. Similarly, assume that

ε = slack(p) for some p ∈ P1 \ P2. After the update the slack at p will be 0, so we gain a

new tight point since by Lemma 5 the point p cannot be tight. Therefore, either y′ has one

additional integral facility, or one additional tight point. A similar argument shows that the

same holds if the algorithm decides to replace y with y′′. ut

Proof. (Of Theorem 2) By Lemma 7, in each iteration we either gain one additional integral

facility or one additional tight point. Therefore, after 2|F | iterations the algorithm must

terminate with an integral solution ŷ.



By Lemma 6, in each iteration we maintain feasibility. It follows that the set T =

{ v ∈ F : ŷv = 1 } is feasible. Finally, by Lemma 6 and induction we get Pr[v ∈ T ] = yv

for all v ∈ F . ut

In terms of the differences between these two algorithms discussed, they both exhibit a

trade-off in solution quality versus time. The first algorithm (independent rounding) pre-

sented has a theoretical bound, however will often be slower than the second, as for large

instances we need to evaluate the objective function in (1) many times. On the other hand,

the runtime of the second algorithm (dependent rounding) is dependent on the number of

tight points in the instance. Therefore for instances with a small number of tight points, the

dependent algorithm will most likely have a faster running time.

We close this section by noting that while the output set T is independent and Pr[v ∈

T ] = yu, we cannot prove the guarantee of Lemma 3 for E[f(T )] since the rounding decisions

are not independent of one another.

4 Hardness

In this section we discuss the inapproximability of maximum facility location. In particular,

we show that there is no polynomial time α-approximation for α > (1−1/e) unless P = NP.

Theorem 3. For any ε > 0, there is no (1−1/e+ε)-approximation algorithm for maximum

facility location, unless P = NP.

Proof. In order to show hardness of the maximum facility location problem, we reduce it

from the maximum coverage problem. In the maximum coverage problem we are given an

integer k, a universe U = {u1, u2, . . . , un }, and a collection of subsets S = {S1, S2, . . . , Sm }

such that ∀S ∈ S : S ⊆ U . Our goal is to select a collection C ⊆ S of these subsets, where

|C| ≤ k and we maximise the quantity

∣∣∣∣∣ ⋃
Si∈C

Si

∣∣∣∣∣ .



It has been shown that there is no polynomial time algorithm for this problem with an

α-approximation for α >
(
1− 1

e

)
unless P = NP Feige (1998); Khuller et al. (1999).

To begin the reduction to maximum facility location, we create a client cu for each

element u ∈ U . The main constraint we model is that we can only pick at most k subsets

from our collection S. Therefore we create k|S| facilities. For each subset S ∈ S, we create

the facilities φS,1, φS,2, . . . , φS,k representing the subset S. From these facilities, we form k

cliques in the interval graph such that for every value of i ∈ [1, k], every pair of intervals

in the set { IφS,i | S ∈ S } is overlapping. This ensures that we can only choose to open one

facility (i.e. select one subset from the collection) from each clique, and this can be done at

most k times.

U = {u1, u2, u3 } ,
S = {S, T } ,
S = {u1, u2 } ,
T = {u2, u3 }

cu1

cu2

cu3

φS,1

φT,1

φS,k

φT,k

k times

Interval graph

IφS,1 IφS,2 IφS,k

. . .

IφT,1 IφT,2 IφT,k

Fig. 4: An example of a reduction from the maximum coverage problem to the maximum
facility location problem. In this instance, there are three elements (u1, u2 and u3) and two
subsets (S and T ). Given an integer k, we create k intervals for each subset and create k
cliques. In each clique, every pair of intervals overlap. This means we can select at most k
subsets.



If an element u ∈ U is in a set S ∈ S, then we add the edges

(cu, φS,1), (cu, φS,2), . . . , (cu, φS,k)

all with weight 1. See Figure 4. This means that once we choose to open the facility φS,i, we

are essentially covering all of the elements u′ ∈ S, by assigning all of the clients cu′ to φS,i.

We now argue that the value of the maximum facility location instance equals the value

of the maximum coverage instance. Let Φ be the set of facilities opened and CΦ be the

corresponding subsets we choose from the collection S. Since we can pick at most one facility

from each clique, and there are k of them, it follows that |CΦ| ≤ k.

In order to argue that the values are the same, we observe that by opening a facility φS,i,

we allow all of the clients connected to φS,i to be assigned. Since all of the edge weights are

1, this corresponds to how many elements we cover if we select the subset S. The second

observation is that the instance cannot benefit by opening the facility φS,i and φS,j for j 6= i,

as a client can only be assigned to a single open facility. This directly corresponds to covering

no new elements.

Then from the discussion above and the inapproximability result Feige (1998); Khuller

et al. (1999) for maximum coverage, we arrive at the theorem. ut

5 Experiments

While we believe that our general scheme can be useful in the analysis of various biological

questions by *Seq assays, in this proof of concept we focus on the detection of deletions

in a donor genome with respect to a reference genome. We implemented the engineered

independent rounding with alteration (Independent) and the dependent rounding algorithm

(Dependent). Our implementation was done in Java 1.8, using Gurobi gur (2015) to solve

the linear program. We also solve the integer program (IP) for benchmarking purposes.



To mimic the conflict resolution approach of VariationHunter Hormozdiari et al. (2010)

(see Related Work), we further implemented two simple greedy algorithms. The first method

chooses a facility at each iteration that leads to the highest increase in value (according to the

objective in (1)) that does not conflict with the current set (wGreedy). The second method

picks the facility that covers the largest number of new clients (Greedy). Experiments were

run on a quad-core Intel Core i7 processor running at 2.7 GHz with 16 GB of RAM. In the

following, we evaluate the performance of our method on both simulated data and a real

Illumina sequencing data set.

5.1 Simulated reads: Craig Venter

We use the benchmark data set designed in Marschall et al. (2012) for the evaluation of

algorithms that reconstruct structural variants (SV) from NGS reads. In short, Craig Venter’s

genome is modeled by inserting annotated structural variants Levy et al. (2007) into the

reference genome. From the resulting two different alleles, 100 bp paired-end reads from

fragments of mean length µ = 312 (σ = 15) were simulated using UCSC’s SimSeq5. All

reads (30×) were aligned to reference genome hg 18 using BWA Li and Durbin (2009),

allowing up to 25 alignments per read. The read alignments were provided in Marschall

et al. (2012) as input to the proposed method CLEVER and all competing state-of-the-art

SV discovery methods. The performance of the different tools in predicting insertions and

deletions was measured in terms of recall = TP/(TP+FN) and precision = TP/(TP+FP),

where a predicted deletion counts as true positive (TP) if it overlaps a true deletion and

differs in length by no more than 100 bp (∼ mean distance between reads of same fragment).

In this metric, CLEVER performed particularly well in the prediction of deletions of size

20-99 bp, compared to previous insert size based approaches. The authors observed, however,

a large fraction of false positive calls (30% in the 20-49 bp range) caused by misalignments

and mapping ambiguities.

5 https://github.com/jstjohn/SimSeq



Here, we demonstrate the ability of our method to guide the selection of a core subset of

deletions among many candidate predictions by resolving conflicts resulting from ambiguous

mappings. More specifically, we compile CLEVER’s output of statistically significant dele-

tions into an instance of the maximum facility location problem. From the opened facilities

we derive our final prediction of deletions in Venter’s genome. Since we do not intend to

provide a comprehensive method for the detection of structural variants, we refrain from

comparing the overall performance to alternative SV discovery methods. On the contrary,

our scheme can be applied to the set of candidate predictions computed by any soft clustering

based SV caller.

Table 1 shows recall and precision achieved by the different algorithms. In the defintion of

TP we avoid a single deletion to be explained by several (different) predictions and a single

prediction to explain multiple true deletions by computing a maximum cardinality matching

between predicted deletions and true deletions. Each method was provided with all significant

deletions called by CLEVER Marschall et al. (2012) (CLEVER-cand). Analogously to the

evaluation in Marschall et al. (2012), we consider deletions of size 20-49 (8,502 true del.),

50-99 (1,822 true del.), and 100-50,000 bases (2,996 true del.). Deletions of size less than 20

bases are difficult to discover by an insert size based scheme as implemented by CLEVER.

CLEVER also offers a script to filter variants that are located too close to each other. We

include the evaluation of this filtered set of predictions (CLEVER-filter).

All methods are able to reduce the number of false postive calls made by CLEVER signif-

icantly, at only a small cost in recall. The very similar accuracy of the predictions obtained

by the maximum facility location algorithms and the greedy algorithms is remarkable, since

they are based on different mathematical models. While the latter seeks a minimal set of

deletions (facilities) to explain all reads, the algorithms developed in this work rely exclu-

sively on alignment scores and conflicts between deletions and do not impose any further

assumptions. In contrast, the post-processing step optionally applied by CLEVER suffers

from a significant loss in recall, in particular in the relevant range of 20-99 bases long dele-



tions. Although this filtering scheme targets (a relaxed definition of) conflicts, it neglects

ambiguous mappings of reads.

In terms of runtime performance, the most notable trend is that the greedy heuristics

were two orders of magnitude slower than the LP rounding heuristics, taking days rather

than minutes to find a solution. This is because the greedy algorithms need to evaluate the

objective function (1) many times, which can be expensive for large instances. Compare this

to our solutions which solve a LP and evaluate the objective function a few times. Surpris-

ingly, the IP solver showed a performance comparable to our heuristics. This is probably

due to the fact that the IP approach involves a single call to the highly optimized Gurobi

software library written in C, while our implementation uses Java. Nevertheless, we expect

our rounding algorithms to scale better on larger instances.

5.2 Illumina reads: NA12878

Real data pose unique challenges like PCR artefacts or chimeric reads to a computational

analysis. We thus evaluate the performance of our method on publicly available Illumina

sequencing data of the well-studied NA12878 individual (European Nucleotide Archive,

ERA172924). 101 bp reads were sequenced (50×) from the ends of fragments whose mean

length µ was empirically estimated by CLEVER to be 320.89 bp (σ = 66.56).

We followed the same protocol as with the simulated benchmark. We cast statistically

significant deletions predicted by CLEVER as our input facilities F . From facilities opened

by our algorithm(s) we derive our final prediction of deletions in NA12878’s genome. We

measured recall and precision of deletion calling on chromosomes 1 through X with respect

to two truth sets made available by Layer et al. (2014). The first truth set (1000G) contains

3,376 non-overlapping deletions validated in NA12878 by the Mills et al. study Mills et al.

(2011). The second truth set (long-read) comprises 4,095 predicted deletions that were vali-

dated by PacBio or Illumina Moleculo long-read sequencing data (for details see Layer et al.

(2014)).



Since for this real data set not the complete set of true deletions is known, we applied the

following precision correction to the output of all benchmarked methods. Predicted deletions

D that do not match any true deletion and that are not supported by at least one read that in

turn supports at least one true deletion through one of its alternative alignments do not count

as false positive hits. By definition, there exists no mapping of the set of reads supporting

one of the deletions in D that would contribute any true positive hit, potentially due to true

deletions in NA12878’s genome that are missing in our truth set. Thus there is no meaningful

way of comparing the performance of postprocessing methods among predictions in D and

their inclusion would blur the results on the remaining predictions where the existence of an

alternative assignment to a true deletion indicates a true false postive prediction.

The number of (validated) true deletions for NA128787 in the relevant ranges of 20-49

and 50-99 are with 47 and 156 for 1000G and with 101 and 522 for long-read relatively

small and thus the precise recall values have to be considered with care. The overall trend,

however, seems to agree with the results on the simulated data set (Table 2).

Again, with a rather modest loss in recall we are able to increase the precision with

respect to truth sets 1000G and long-read from 8.8% to around 69%, and from 9.9% to

around 79%, respectively. Similar to the results on the simulated data set, the approximate

or optimal solutions our algorithms find for the maximum facility location formulation are

similar in terms of recall and precision to the ones returned by the greedy heuristics. In

contrast to the greedy approach, however, our algorithms compute these solutions in the

order of minutes rather than days. Compared to the heuristic filtering strategy optionally

applied by CLEVER we increase the precision with respect to truth sets 1000G and long-read

by ∼ 30% and ∼ 11%, respectively.

6 Conclusion and discussion

We presented a universal framework for resolving conflicting predictions from ambiguous

read mappings and demonstrated, as proof of concept, its utility in reporting a final set of



deletions given a large set of candidate deletions. Since our model formulates conflicts as

overlaps of intervals but does not impose any further assumptions like parsimony, we expect

it to be useful in a wide range of reference-based NGS data analysis.

For instance, the algorithm proposed in Eslami Rasekh et al. (2015) clusters clones (fos-

mids or bacterial artificial chromosomes - BACs) split by a (putative) inversion breakpoint

to discover large inversions. The authors observed that a parsimony objective similar to the

one applied in VariationHunter (and evaluated in our experiments) fails to properly resolve

ambiguities among breakpoints located in highly repetitive regions. Furthermore, our model

might be useful in identifying tumor-specific deletions from matched tumor/normal samples

based on their conflict and ambiguous mappings Wittler and Chauve (2011) as well as in

resolving intersecting quasi-cliques enumerated to cluster metagenomic sequences Yang et al.

(2013). In contrast to a more restrictive definition of candidates as single cliques in each con-

nected component Ratan et al. (2015), the ability to resolve conflicts allows a more sensitive

prediction of candidates.

The key assumption of our model that determines the range of potential applications is

that conflicts can be formulated as the overlap of genomic intervals. It captures many features

of haploid and diploid organisms, except for rare overlapping events on different alleles

which require a specialized treatment Wittler (2013). Conflicts in a mixture of cancerous and

healthy cells, however, are inadequately covered by simple interval overlaps Wittler (2013)

and will require a generalization of our model. Also, features like the DNA methylation status

naturally relate to individual bases rather than genomic intervals.
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Table 1: Recall and precision achieved by the different algorithms when provided with the
candidate predictions of CLEVER Marschall et al. (2012) (CLEVER-cand) on the simulated
Craig Venter data set. We report recall for deletions of different length in a-b bases (Rec.
a-b) as well as overall recall and overall precision. The last column gives the total running
time in minutes.

Rec. 20-49 Rec. 50-99 Rec. 100-50kb Recall Precision runtime
CLEVER-cand 66.80 79.47 68.49 68.91 9.93 N/A
CLEVER-filter 46.26 64.38 66.76 53.35 51.06 < 1
Independent 62.37 75.30 66.29 65.02 40.63 15.8
Dependent 63.10 75.96 66.32 65.59 40.49 4.5
IP 63.46 75.96 66.26 65.80 40.26 10.4
Greedy 63.02 75.14 66.42 65.44 41.47 1840.0
wGreedy 62.86 74.97 66.29 65.29 41.42 4095.0



Table 2: Recall and precision with respect to truth sets 1000G and long-read achieved by the
different algorithms when provided with the candidate predictions of CLEVER Marschall
et al. (2012) (CLEVER-cand) on the Illumina data set for NA12878. We report recall for
deletions of different length in a-b bases (Rec. a-b) as well as overall recall and overall
precision. The number of true deletions in the three different size ranges are shown in brackets
for the two truth sets. The last column gives the total running time in minutes.

Rec. 20-49 Rec. 50-99 Rec. 100-50kb Rec. Precision runtime
1000G (47,156,2989)

CLEVER-cand 5.4 35.2 65.8 63.5 8.8 N/A
CLEVER-filter 5.4 34.6 63.2 61.1 53.26 < 1
IP 5.4 34.0 62.4 60.3 69.3 10.5
Dependent 5.4 34.0 62.3 60.1 69.03 3.1
Independent 5.4 34.0 62.3 60.2 69.11 7.0
Greedy 5.4 34.6 62.2 60.2 69.79 1737.5
wGreedy 5.4 34.6 62.4 60.3 69.99 4947.2

long-read (101,522,3443)
CLEVER-cand 23.5 44.5 79.5 73.9 9.9 N/A
CLEVER-filter 20.0 37.0 72.4 66.8 71.0 < 1
IP 18.8 38.4 72.6 67.1 78.9 10.5
Dependent 20.0 38.4 73.0 67.4 79.4 3.1
Independent 20.0 38.2 73.0 67.4 79.5 7.0
Greedy 20.0 37.8 72.6 67.1 80.1 1737.5
wGreedy 20.0 37.8 72.3 66.8 79.8 4947.2



A Missing proofs

Proof. (Of Lemma 3) We focus on a fixed but arbitrary client u ∈ C. Let us rename the

facilities v1, v2, . . . , vk so that wuv1 ≤ wuv2 ≤ . . . ≤ wuvk , and define wuv0 = 0. Finally, set

w(u) = maxv∈R wuv.

We aim to show that E[w(u)], the contribution of u to E[f(R)], is at least a constant

times
∑

v∈F wuv xuv, the contribution of u to the value of (x, y).

Let Ŷv be an indicator variable that is 1 if v ∈ R and 0 otherwise, then

Pr[w(u) < wuvi ] = Pr

[
k∧
j=i

Ŷvj = 0

]

=
k∏
j=i

Pr[Ŷvj = 0] =
k∏
j=i

(1− αyvj)

≤

(
1−

α
∑k

j=i xuvj
k − i+ 1

)k−i+1

,

where the last inequality follows from the arithmetic-mean geometric-mean inequality and

the feasibility of (x, y).

Let x̃ =
∑k

j=i xuvj and r = k − i+ 1. We observe that the function a(x̃) = 1−
(
1− αx̃

r

)r
is concave on the interval x̃ ∈ [0, 1], and thus can be lowerbounded by the linear function

b(x̃) =
[
1−

(
1− α

r

)r]
x̃. This is because a(0) = b(0) and a(1) = b(1). Therefore,

Pr[w(u) ≥ wuvi ] = 1− Pr[w(u) < wuvi ]

≥ 1−

(
1−

α
∑k

j=i xuvj
k − i+ 1

)k−i+1

≥

[
1−

(
1− α

k − i+ 1

)k−i+1
]

k∑
j=i

xuvj

≥ (1− e−α)
k∑
j=i

xuvj .



We now express E[w(u)] in terms of Pr[w(u) ≥ wuvi ]

E[w(u)] =
k∑
j=1

wuvj Pr[w(u) = wuvj ]

=
k∑
j=1

(
j∑
i=1

wuvi − wuvi−1

)
Pr[w(u) = wuvj ]

=
k∑
i=1

k∑
j=i

(wuvi − wuvi−1
) Pr[w(u) = wuvj ]

=
k∑
i=1

(wuvi − wuvi−1
) Pr[w(u) ≥ wuvi ]

Now we can use our bound on Pr[w(u) ≥ wuvi ] to lowerbound the expected value of w(u)

E[w(u)] =
k∑
i=1

(wuvi − wuvi−1
) Pr[w(u) ≥ wuvi ]

≥ (1− e−α)
k∑
i=1

(wuvi − wuvi−1
)

k∑
j=i

xuvj

= (1− e−α)

(
k∑
i=1

k∑
j=i

wuvjxuvj −
k∑
i=1

k∑
j=i

wuvi−1
xuvj

)

= (1− e−α)
k∑
j=1

xuvj

j∑
i=1

(wuvi − wuvi−1
) = (1− e−α)

k∑
j=1

xuvjwuvj .

Finally, by linearity of expectation, we have

E[f(R)] =
∑
u∈C

E[w(u)] ≥ (1− e−α)
∑

u∈C,v∈F

xuvwuv,

which is precisely what we needed to prove. ut


